Question Number	Correct Answer		Reject	Mark
1(a)(i)	Purple gas/ gas turns colourless	(1)	Purple liquid/solid	2
	to (silver/shiny) grey/black solid	(1)		
	Just gas to solid			
	OR solid forming (1)			

Question Number	Correct Answer		Reject	Mark
1 (a)(ii)	First mark			2
	Heat for different lengths of time			
	OR			
	After more time/specified time eg 2 days			
	OR			
	Use a colorimeter			
	OR			
	Set up reverse reaction	(1)		
	Second mark			
	Measure the concentration of a reactant or product of two tubes, which should be the same			
	OR Colour does not change /is same	(1)		

Question Number	Correct Answer	Reject	Mark
* 1 (b)(i)	Equilibrium moles		5
	HI $\frac{30 \times 0.00353}{1000} = 0.0001059$ (1)		
	$H_2 \text{ and } I_2 = \frac{30 \times 0.00048}{1000} = 0.0000144$ (1)		
	Initial amount of HI = 0.0001059 + 2 x 0.0000144		
	= 0.0001347 (mol)		
	ALLOW TE from wrong moles of either or both entity		
	(1)		
	Mass of 1 mol of HI = 127.9 (1)		
	Mass of HI = 0.0001347 x 127.9		
	= 0.0172 g (1)		
	Correct answer with or without working (5)		
	All marks stand alone		
	Last two marks are available for any amount in moles x 127.9correctly calculated		

Question Number	Correct Answer	Reject	Mark
1 (b)(ii)	K _c = [H ₂][I ₂] [HI] ² Ignore state symbols unless (aq) or (s) Ignore eg or egm	pH ₂ etc (K _p)	1

Question Number	Correct Answer	Reject	Mark
1 (b)(iii)	$K_{\rm c} = \frac{0.00048 \times 0.00048}{0.00353^2}$		1
	= 0.018489		
	= 0.0185		
	Allow all SF except 1		

Question Number	Correct Answer	Reject	Mark
1 (b)(iv)	The units cancel OR		1
	There are the same numbers of moles of reactants and products		

Question Number	Correct Answer	Reject	Mark
1 (c) (i)	K _c ' = <u>[H₂]^{1/2}[I₂]^{1/2}</u> [HI] Ignore state symbols unless (aq) or (s) Ignore eq or eqm	p H ₂ etc (K _p) but not if already penalised	1

Question Number	Correct Answer		Reject	Mark
1 (c)(ii)	$K_{c}^{'} = \frac{[0.00048]^{\frac{1}{2}}[0.00048]^{\frac{1}{2}}}{[0.00353]}$			2
	= 0.136			
	Allow all SF except 1			
		(1)		
	Which is the square root of the previous value			
	OR			
	$K_{c} = (K_{c})^{2}$			
	OR			
	$0.136^2 = 0.0185$	(1)		

Question Number	Correct Answer		Reject	Mark
1 (d)	Frist mark			3
	$K_{\rm p}$ remains unchanged/constant (1	1)	$K_{\rm p}$ decreases for this mark only	
	Second mark			
	(when pressure is increased) the quotient/ratio p_{H2} : $(p_{HI})^2$ becomes less than K_p	SS		
	OR			
	Ratio decreases			
	OR			
	Ratio proportional to 1/P			
	(P is total pressure change)			
	ALLOW			
	$K_{\rm p}$ proportional to 1/P (1	1)		
	Third mark			
	To restore the value of the quotient/ratio to <i>K</i> p			
	ALLOW			
	To restore <i>K</i> p			
	And			
	EITHER			
	p_{H2} increases / p_{H1} decreases (1)			
	OR			
	Equilibrium shifts to the right (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	So that only the water formed in the combustion is absorbed by X / measured. ALLOW 'reacts with X' for 'absorbed by X' OR Otherwise the mass / amount of the water measured will be too high	Reacts with A References to Y	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	(Anhydrous) Calcium chloride / CaCl ₂ / Magnesium sulphate / MgSO ₄ / silica gel / sodium sulphate / Na ₂ SO ₄ ALLOW Phosphorus(V) oxide / phosphorus pentoxide / P ₄ O ₁₀ / P ₂ O ₅ / Silica beads	Sulfuric acid Calcium oxide Silica / SiO ₂ anhydrous copper(II) sulfate	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	Soda lime OR calcium hydroxide / Ca(OH) ₂ and sodium hydroxide / NaOH ALLOW sodium hydroxide / NaOH / potassium hydroxide / KOH / Calcium oxide / CaO	Limewater	1

Question Number	Acceptable Answers		Reject	Mark
2 (a)(iv)	The methods below illustrate the allocation marks. But the first four marks may be so by any correct method.			5
	Method 1			
	mol $CO_2 = 8.8/44 = 0.2 (= mol C)$	(1)		
	mol $H_2O = 3.6/18 = 0.2$ mol $H = 2 \times \text{mol } H_2O = 0.4$	(1)		
	mass $O = 3.6 - (12 \times 0.2 + 1 \times 0.4)$ = 0.8 (g)	(1)		
	mol O = $0.8/16 = 0.05$	(1)		
	Method 2			
	Mass H = 3.60 x 2/18 = 0.40 (g) = 0.40 / 1 = 0.40 (mol)	(1)		
	Mass C = 8.80 x 12/44 = 2.4 (g) = 2.4 / 12 = 0.20 (mol)	(1)		
	Mass $O = 3.60 - (0.40 + 2.4) = 0.80(g)$ = 0.80 / 16 = 0.05 (mol)	(1) (1)		
	Empirical formula = C_4H_8O	(1)		
	TE on incorrect moles but the ratio must whole number	be		
	IGNORE use of O_2 for O in the 'words'			
	Correct empirical formula with some work at each stage scores full marks but	king		
	Correct empirical formula with no working unclear and non-scoring working score final mark only			

Question Number	Acceptable Answers		Reject	Mark
2 (b)(i)	(Molecular ion is m/e =) 72 (= M_r of A)(1)		2
	Molecular formula = C_4H_8O (1)	I)	Structural Or	
	No TE on incorrect molecular ion		Displayed Or	
			Molecular ion	

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Any three of (1 mark for each structure) $\begin{array}{c} CH_2^+ & CH_3 & O\\ H_3C & H_2^+ & H_3C^+ & H_3C^+ \\ H_3C & H_3C & H_3C^+ & H_3C^+ \\ \end{array}$ $\begin{array}{c} OH & OH & OH\\ H_2C & C^+ & CH^+ \\ H_2C & C^+ & CH^+ \\ H_2C & CH^+ \\ H_2C & CH^+ \\ H_2C & H_3C^+ \\ \end{array}$ ALLOW structural formulae (eg CH ₃ CO ⁺) IGNORE Position of positive charge Penalise omission of charge or negative charge once $C_3H_7^+$ and /or $C_2H_3O^+$ scores 1 if no scoring structure		3

Question Number	Acceptable Answers	5	Reject	Mark
*2 (c)	Structure of A (1) O CH H ₃ C—CH CH ₃ Three (proton/H) environments (1) Identify the 6 protons in one environment and 1 each in the other two (1) No TE on incorrect structures except propan-2-ol : scores MP3 only	OR diagram (1) '1' peak proton '1' peak proton '1' peak proton '1' peak proton '6' peak protons 6 proton label (1) both 1 proton labels (1) ALLOW enol structure OH - '1' peak proton CH H ₃ C - C H ₃ '6' peak protons 6 proton label (1) both 1 proton labels (1) ALLOW enol structure		3

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	$Cr_2O_7^{2-}$ + 14H ⁺ + 6Fe ²⁺ \rightarrow 2Cr ³⁺ + 6Fe ³⁺ + 7H ₂ O	Any answers with electrons even if balanced	1
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	Ignore SF except 1 SF – penalise this and/or rounding errors once only in (a)(ii) – (v)		2
	Moles of Fe^{2+} reacting in titration = 23.85 x 10 ⁻³ x 0.255 = 6.08175 x 10 ⁻³ mol * (1)		
	Moles of $Cr_2O_7^{2-}$ that reacted in titration = answer * ÷ 6 = 6.08175 x 10 ⁻³ ÷ 6 = 1.013625 x 10 ⁻³ mol (1)		
	Correct answer with no working scores 2		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	Moles of $Cr_2O_7^{2-}$ at start = 25 x 10 ⁻³ x 0.200 = 5 x 10 ⁻³ mol** (1) Moles of $Cr_2O_7^{2-}$ that reacted with ethanol = answer ** - answer 21(a)(ii) = 5 x 10 ⁻³ - 1.013625 x 10 ⁻³ = 3.986375 x 10 ⁻³ mol (1) Correct answer with no working scores 2		2

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iv)	$\begin{array}{rcl} CH_3CH_2OH + H_2O \\ \rightarrow CH_3COOH + 4H^+ + 4e^- \textbf{(1)} \end{array}$	Use of [O]	2
	3 mol of ethanol needs 12 mol electrons supplied by 2 mol potassium dichromate(VI) ALLOW	Just 3 mol of ethanol reacts with 2 mol Cr ₂ O ₇ ²⁻	
	Use of oxidation numbers of C and Cr OR Use of ratio of electrons lost and gained OR		
	Balanced equation: $3CH_3CH_2OH + 2Cr_2O_7^{2-} + 16H^+$ $\rightarrow 3CH_3COOH + 4Cr^{3+} + 11H_2O$ (1)		
	IGNORE Uncancelled species including the 12 electrons in the last equation		

Question Number	Acceptable Answers		Reject	Mark
3 (a)(v)	Moles of ethanol that reacted with potassium dichromate(VI) = ans. 21(a)(iii) x $3 \div 2$ = 5.9795625 x 10^{-3} mol Concentration in Q = previous answer x 10 x 40 = 2.391825 mol dm ⁻³ (1 mark for x 10 or x 40 and 1 mark for completion of calculation Correct answer with no working scores 3	(1) (2)		3

Question Number	Acceptable Answers		Reject	Mark
3(b)	Fe ²⁺ / iron(II) And any TWO of: Barium diphenylamine sulfonate is a redox indicator	(1)		3
		(1)		
	Barium diphenylamine sulfonate / indicator is reduced by iron(II)			
	OR Iron(II) is oxidized by barium diphenylamine sulfonate / indicator			
	OR Barium diphenylamine sulfonate / indicator oxidized by potassium dichromate(VI)			
	OR Potassium dichromate(VI) is reduced Barium diphenylamine sulfonate / indicator	by (1)		
	The oxidized form / oxidation product barium diphenylamine sulfonate is purple OR the reduced form is colourless	t of		
	ALLOW Oxidised and reduced form of the indicator have different colours	(1)		

Question	Acceptable Answers	Reject	Mark
Number			
*3(c)	EITHER MP1 Difficult to know when reaction is complete	Ethanol evaporates	3
	OR Difficult to know when all the ethanol has been oxidized (to ethanoic acid)	Transfer losses / spillages	
	OR Some ethanol only oxidized to ethanal	Not all sugar fermented	
	ALLOW Some ethanol is oxidized by air (1)		
	MP2 (depends on MP1 correct or 'ethanol evaporates')So less potassium dichromate(VI) will be used up(1)		
	MP3 (depends on MP1 or MP2 or 'ethanol evaporates') Ethanol concentration will appear low (1)		
	OR Other compounds in the fermented solution (e.g. aldehydes) are oxidized also. (1)		
	So more potassium dichromate(VI) will be used up (1)		
	Ethanol concentration will appear high (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (a)(i)	$\begin{array}{rcl} Fe^{2+} \rightarrow Fe^{3+} + e^{(-)} \\ \hline & \gamma_2O_2 + 2H^+ + 2e^{(-)} \rightarrow H_2O \\ OR \\ O_2 + 4H^+ + 4e^{(-)} \rightarrow 2H_2O \\ \end{array}$ ALLOW Reversible arrows Equations in other direction Electrons subtracted on LHS of first equation Multiples Ignore state symbols even if incorrect		1
	Ignore state symbols even in incorrect		

Question Number	Acceptable Answers	Reject	Mark
4 (a)(ii)	$y_2O_2 + 2H^+ + 2Fe^{2+} \rightarrow 2Fe^{3+} + H_2O$ OR $O_2 + 4H^+ + 4Fe^{2+} \rightarrow 4Fe^{3+} + 2H_2O$ ALLOW Multiples Reversible arrows Ignore state symbols even if incorrect No TE from 20(a)(i)	Equation in the wrong direction, even with reversible sign	1

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$		1
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	(Pale) pink	Purple / mauve	1

Question Number	Acceptable Answers		Reject	Mark
4	Amount of $MnO_4^- = 24.90 \times 0.0195 \times 10^{-3}$ = 4.8555 x 10 ⁻⁴ (mol)	(1)		5
(b) (iii)	Amount of Fe^{2+} = answer * x 5 in 25 cm ³ = 4.8555 x 10 ⁻⁴ x 5 = 2.42775 x 10 ⁻³ (mol)			
	So in 250 cm ³ = 2.42775 x 10^{-2} (mol)	(1)		
	$(M_r (FeSO_4.7H_2O) = 277.9)$			
	ROUTE 1 (via moles)			
	Amount of Fe^{2+} used to prepare the solution = 6.90 / 277.9 = 2.4829 x 10 ⁻² (mol)	(1)		
	EITHER			
	% of Fe ²⁺ remaining at titration = 100 x 2.42775 x 10 ⁻² / 2.4829 x 10 ⁻² = 97.7785 (%)	(1)		
	% Oxidized = 100 - 97.7785 = 2.221 (%)	(1)		
	OR			
	Amount oxidized = $2.4829 \times 10^{-2} - 2.42775 \times 10^{-2}$ = 5.516×10^{-4} (mol)	(1)		
	% Oxidized = 5.516 x 10 ⁻⁴ x 100 / 2.4829 x 10 ⁻² = 2.221 (%)	(1)		
	ROUTE 2 (via mass)			
	mass from titration = $2.42775 \times 10^{-2} \times 277$ = 6.7467 (g)	.9 (1)		
	% of Fe ²⁺ remaining at titration = 100 x 6.7467 / 6.9 = 97.7785 (%)	(1)		
	% Oxidized = 100 - 97.7785 = 2.221 (%)	(1)		
	Ignore SF except 1 SF unless justified in b(in Correct answer no working scores 5 marks	v)		
	90.22% obtained from failure to multiply by scores 4 marks	10		

Question Number	Acceptable Answers	Reject	Mark
4	3 (significant figures) because all the		1
(b)(iv)	data (except $A_r(H)$) is given to 3 SF		
	OR 2 (significant figures) because the least precise data ($A_r(H)$) is 2 SF		
	OR 2 (significant figures) because the data is to three figures. After processing only two figures are certain.		
	OR 1 (significant figure) because of the subtraction of two similar numbers.		

4 (c) (i) Alkali neutralizes the acid shifting the equilibrium to the left 1 OR Alkali neutralizes the acid so E value for half cell becomes less (than +2.20 V) 1 ALLOW 'Reacts with' and 'removes' for 'neutralizes' 1	Question Number	Acceptable Answers	Reject	Mark
IGNORE Just "shifts equilibrium to the left"		equilibrium to the left OR Alkali neutralizes the acid so E value for half cell becomes less (than +2.20 V) ALLOW 'Reacts with' and 'removes' for 'neutralizes' IGNORE		1

Question Number	Acceptable Answers	Reject	Mark
4	$4Fe^{3+} + 4H_2O \rightarrow 3Fe^{2+} + FeO_4^{2-} + 8H^+$ OR Multiples		2
(c)(ii)	Species (1) balance (1) Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mar k
4	Required half cell value is $E^{\bullet} = (+)0.77$ (1)		2
(c)(iii)	$E_{\text{cell}}^{\Theta} = (0.77 - 2.20 =) -1.43 \text{ V}$		
	(E ^e _{cell} negative so disproportionation) not feasible (1)		
	TE on calculated negative value of E^{Θ}_{cell} No TE on positive value for E^{Θ}_{cell}		
	OR Correct application of anti-clockwise rule e.g.		
P	$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$ $E^{\circ} = +0.77 V$	5	
6	$FeO_4^{2-}(aq) + 8H^+(aq) + 3e^- \rightleftharpoons Fe^{3+}(aq) + 4H_2O(I)$ $E^6 = +2.20 V$		
	Equations in order of increasing <i>E</i> ^e value and arrows shown (1)		
	Anti-clockwise rule shows top reaction moves left and bottom reaction moves right so		
	disproportionation not feasible (1)		