Question Number	Correct Answer	Reject	Mark	
$\mathbf{1 (a) (i)}$	Purple gas/ gas turns colourless	(1)	Purple liquid/solid	2
	to (silver/shiny) grey/black solid Just gas to solid (1) OR solid forming (1)			

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & \hline 1 \\ & (\mathrm{a})(\mathrm{ii}) \end{aligned}$	First mark Heat for different lengths of time OR After more time/specified time eg 2 days ... OR Use a colorimeter OR Set up reverse reaction Second mark Measure the concentration of a reactant or product of two tubes, which should be the same OR Colour does not change /is same (1)		2

Question Number	Correct Answer	Reject	Mark
$\begin{array}{\|l} \hline * 1 \\ (b)(i) \end{array}$	Equilibrium moles $\begin{align*} & \mathrm{HI} \quad \begin{aligned} \frac{30 \times 0.00353}{1000} & =0.0001059 \\ \mathrm{H}_{2} \text { and } \mathrm{I}_{2} \frac{30 \times 0.00048}{1000} & =0.0000144 \end{aligned} \tag{1}\\ & \begin{aligned} \text { Initial amount of } \mathrm{HI}= & 0.0001059 \\ & +2 \times 0.0000144 \\ = & 0.0001347(\mathrm{~mol}) \end{aligned} \tag{1} \end{align*}$ ALLOW TE from wrong moles of either or both entity Mass of 1 mol of $\mathrm{HI}=127.9$ Mass of $\mathrm{HI} \quad=0.0001347 \times 127.9$ $\begin{equation*} =0.0172 \mathrm{~g} \tag{1} \end{equation*}$ Correct answer with or without working All marks stand alone Last two marks are available for any amount in moles $\times 127.9$ correctly calculated		5

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$	p H etc (K_{p})	1
(b)(ii)	Ignore state symbols unless (aq) or (s) Ignore eq or eqm		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (b) (iii)	$\mathrm{K}_{\mathrm{c}}=\frac{0.00048 \times 0.00048}{0.00353^{2}}$ $=0.018489$ $=0.0185$ Allow all SF except 1	1	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	The units cancel		1
(b)(iv)	OR There are the same numbers of moles of reactants and products		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (c) (i)}$	$\mathrm{K}_{\mathrm{c}}{ }^{\prime}=\left[\mathrm{H}_{2}\right]^{1 / 2}\left[\mathrm{I}_{2}\right]^{1 / 2}$ $[\mathrm{HI}]$	$\mathrm{pH} \mathrm{H}_{2}$ etc $\left(\mathrm{K}_{\mathrm{p}}\right)$ but not if already penalised	1
Ignore state symbols unless (aq) or (s)			
Ignore eq or eqm			

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & \hline 1 \\ & (\mathrm{c})(\mathrm{ii}) \end{aligned}$	$\begin{aligned} \mathrm{K}_{\mathrm{c}}^{\prime} & =\frac{[0.00048]^{1 / 2}[0.00048]^{1 / 2}}{[0.00353]} \\ & =0.136 \end{aligned}$ Allow all SF except 1 Which is the square root of the previous value OR $K_{c}=\left(K_{c}^{\prime}\right)^{2}$ OR $\begin{equation*} 0.136^{2}=0.0185 \tag{1} \end{equation*}$		2

Question Number	Correct Answer	Reject	Mark
1 (d)	Frist mark		3
	K_{p} remains unchanged/constant	K_{p} decreases for	
	Second mark		
	(when pressure is increased) the quotient/ratio $\mathrm{p}_{\mathrm{H} 2}$: $\left(\mathrm{p}_{\mathrm{H}}\right)^{2}$ becomes less than Kp		
	OR		
	Ratio decreases		
	OR		
	Ratio proportional to 1/P		
	(P is total pressure change)		
	ALLOW		
	K_{p} proportional to $1 / P$		
	Third mark		
	To restore the value of the quotient/ratio to Kp		
	ALLOW		
	To restore Kp		
	And		
	EITHER		
	$\mathrm{p}_{\mathrm{H} 2}$ increases / $\mathrm{p}_{\mathrm{H} 1}$ decreases (1)		
	OR		
	Equilibrium shifts to the right (1)		

Question	Acceptable Answers		Reject	Mark
2 (a)(i)	So that only the water formed in the combustion is absorbed by $\mathrm{X} /$ measured. ALLOW 'reacts with X ' for 'absorbed by X ' OR Otherwise the mass / amount of the water measured will be too high		Reacts with A References to Y	1
Question Number	Acceptable Answers		Reject	Mark
$\begin{aligned} & 2 \\ & (\mathrm{a})(\mathrm{ii}) \end{aligned}$	(Anhydrous) Calcium chloride / $\mathrm{CaCl}_{2} /$ Magnesium sulphate / MgSO_{4} / silica gel / sodium sulphate / $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ALLOW Phosphorus(V) oxide / phosphorus pentoxide / $\mathrm{P}_{4} \mathrm{O}_{10} / \mathrm{P}_{2} \mathrm{O}_{5}$ / Silica beads		Sulfuric acid Calcium oxide Silica / SiO_{2} anhydrous copper(II) sulfate	1
Question Number	Acceptable Answers	Reject		Mark
$\begin{aligned} & \mathbf{2} \\ & (a)(i i i) \end{aligned}$	Soda lime OR calcium hydroxide / $\mathrm{Ca}(\mathrm{OH})_{2}$ and sodium hydroxide / NaOH ALLOW sodium hydroxide / NaOH / potassium hydroxide / KOH / Calcium oxide / CaO		ewater	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 2 \\ & (a)(i v) \end{aligned}$	The methods below illustrate the allocation of marks. But the first four marks may be scored by any correct method. Method 1 $\begin{equation*} \mathrm{mol} \mathrm{CO}_{2}=8.8 / 44=0.2(=\mathrm{mol} \mathrm{C}) \tag{1} \end{equation*}$ $\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=3.6 / 18=0.2$ $\begin{equation*} \mathrm{mol} \mathrm{H}=2 \times \mathrm{mol} \mathrm{H} \mathrm{O}=0.4 \tag{1} \end{equation*}$ $\begin{align*} \text { mass } \mathrm{O} & =3.6-(12 \times 0.2+1 \times 0.4) \\ & =0.8(\mathrm{~g}) \tag{1} \end{align*}$ $\begin{equation*} \mathrm{mol} \mathrm{O}=0.8 / 16=0.05 \tag{1} \end{equation*}$ Method 2 $\begin{align*} \text { Mass } \mathrm{H} & =3.60 \times 2 / 18=0.40(\mathrm{~g}) \\ & =0.40 / 1=0.40(\mathrm{~mol}) \tag{1}\\ \text { Mass } \mathrm{C} & =8.80 \times 12 / 44=2.4(\mathrm{~g}) \\ & =2.4 / 12=0.20(\mathrm{~mol}) \tag{1}\\ \text { Mass } \mathrm{O} & =3.60-(0.40+2.4)=0.80(\mathrm{~g}) \tag{1}\\ & =0.80 / 16=0.05(\mathrm{~mol}) \tag{1} \end{align*}$ $\begin{equation*} \text { Empirical formula }=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} \tag{1} \end{equation*}$ TE on incorrect moles but the ratio must be whole number IGNORE use of O_{2} for O in the 'words' Correct empirical formula with some working at each stage scores full marks but Correct empirical formula with no working or unclear and non-scoring working scores final mark only		5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i)}$	(Molecular ion is $\mathrm{m} / \mathrm{e}=) 72\left(=\mathrm{M}_{\mathrm{r}}\right.$ of $\mathbf{A) (1)}$		$\mathbf{2}$
	Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	$\mathbf{(1)}$	Structural Or
No TE on incorrect molecular ion	Displayed Or Molecular ion		

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | | | |
| (b)(ii) | Any three of (1 mark for each structure) | | |
| | 2 | | |

Question	Acceptable Answers		Reject	Mark
* 2 (c)	Structure of A (1) Three (proton/H) environments Identify the 6 protons in one environment and 1 each in the other two No TE on incorrect structures except propan-2-ol : scores MP3 only	OR diagram (1) '6' peak protons 6 proton label (1) both 1 proton labels (1) ALLOW enol structure '6' peak protons 6 proton label (1) both 1 proton labels (1)		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+}$ $\rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols even if incorrect	Any answers with electrons even if balanced	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Ignore SF except 1 SF - penalise this and/or rounding errors once only in (a)(ii) $-(\mathrm{v})$		$\mathbf{2}$
	Moles of Fe^{2+} reacting in titration $=23.85 \times 10^{-3} \times 0.255$ $=6.08175 \times 10^{-3} \mathrm{~mol} *$ Moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ that reacted in titration $=$ answer $\div 6$ $=6.08175 \times 10^{-3} \div 6$ $=1.013625 \times 10^{-3} \mathrm{~mol}$ Correct answer with no working scores 2	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline 3 \\ (a)(i i i) \end{array}$	$\begin{align*} & \text { Moles of } \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \text { at start } \\ & =25 \times 10^{-3} \times 0.200 \\ & =5 \times 10^{-3} \mathrm{~mol}{ }^{* *} \tag{1} \end{align*}$ Moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ that reacted with ethanol $=$ answer ${ }^{* *}$ - answer 21(a)(ii) $=5 \times 10^{-3}-1.013625 \times 10^{-3}$ $\begin{equation*} =3.986375 \times 10^{-3} \mathrm{~mol} \tag{1} \end{equation*}$ Correct answer with no working scores 2		2

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 3 \\ (a)(i v) \tag{1} \end{array}$	$\begin{aligned} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} & +\mathrm{H}_{2} \mathrm{O} \\ & \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \end{aligned}$ 3 mol of ethanol needs 12 mol electrons supplied by 2 mol potassium dichromate(VI) ALLOW Use of oxidation numbers of C and Cr OR Use of ratio of electrons lost and gained OR Balanced equation: $\begin{align*} & 3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+16 \mathrm{H}^{+} \\ & \rightarrow 3 \mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$ I GNORE Uncancelled species including the 12 electrons in the last equation	Use of [O] Just 3 mol of ethanol reacts with 2 $\mathrm{mol} \mathrm{Cr} \mathrm{C}_{7}{ }^{2-}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Moles of ethanol that reacted with (a)(v) $=$ ans. $21($ a) (iii) $\times 3 \div 2$ $=5.9795625 \times 10^{-3} \mathrm{~mol}$ Concentration in \mathbf{Q} $=$ previous answer $\times 10 \times 40$ $=2.391825$ mol dm^{-3} $(1$ mark for $\times 10$ or $\times 40$ and 1 mark for completion of calculation Correct answer with no working scores 3	(1)	$\mathbf{3}$

Question Number	Acceptable Answers	Reject	Mark
3(b)	$\mathrm{Fe}^{2+} /$ iron(II) And any TWO of: Barium diphenylamine sulfonate is a redox indicator ALLOW reaction is redox Barium diphenylamine sulfonate / indicator is reduced by iron(II) OR Iron(II) is oxidized by barium diphenylamine sulfonate / indicator OR Barium diphenylamine sulfonate / indicator oxidized by potassium dichromate(VI) OR Potassium dichromate(VI) is reduced by Barium diphenylamine sulfonate / indicator The oxidized form / oxidation product of barium diphenylamine sulfonate is purple OR the reduced form is colourless ALLOW Oxidised and reduced form of the indicator have different colours		3

Question Number	Acceptable Answers	Reject	Mark
*3(c)	EITHER MP1 Difficult to know when reaction is complete OR Difficult to know when all the ethanol has been oxidized (to ethanoic acid) OR Some ethanol only oxidized to ethanal ALLOW Some ethanol is oxidized by air MP2 (depends on MP1 correct or 'ethanol evaporates') So less potassium dichromate(VI) will be used up MP3 (depends on MP1 or MP2 or 'ethanol evaporates') Ethanol concentration will appear low (1) OR Other compounds in the fermented solution (e.g. aldehydes) are oxidized also. So more potassium dichromate(VI) will be used up Ethanol concentration will appear high	Ethanol evaporates Transfer losses / spillages Not all sugar fermented	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a) (i)}$	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{(-)}$ $1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	1	
	ALLOW Reversible arrows Equations in other direction Electrons subtracted on LHS of first equation Multiples Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$	$1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{Fe}^{2+} \rightarrow 4 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	Equation in the wrong direction, even with reversible sign	1
(a)(ii)	ALLOW Multiples Reversible arrows Ignore state symbols even if incorrect No TE from 20(a)(i)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (i)}$	$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}$ $\rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$		1
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	(Pale) pink	Purple / mauve	1

Question Number	Acceptable Answers	Reject	Mark
* 4	$\begin{align*} \text { Amount of } \mathrm{MnO}_{4}^{-} & =24.90 \times 0.0195 \times 10^{-3} \\ & =4.8555 \times 10^{-4}(\mathrm{~mol})^{*} \tag{1} \end{align*}$		5
(b) (iii)	$\begin{aligned} \text { Amount of } \mathrm{Fe}^{2+} & =\text { answer } * \times 5 \\ \text { in } 25 \mathrm{~cm}^{3} & =4.8555 \times 10^{-4} \times 5 \\ & =2.42775 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$		
	$\begin{align*} & \text { So in } 250 \mathrm{~cm}^{3}=2.42775 \times 10^{-2}(\mathrm{~mol}) \tag{1}\\ & \left(\mathrm{Mr}_{\mathrm{r}}\left(\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\right)=277.9\right) \end{align*}$		
	ROUTE 1 (via moles)		
	Amount of Fe^{2+} used to prepare the solution $=6.90 / 277.9=2.4829 \times 10^{-2}(\mathrm{~mol})$		
	EITHER		
	$\begin{align*} & \% \text { of } \mathrm{Fe}^{2+} \text { remaining at titration } \\ & =100 \times 2.42775 \times 10^{-2} / 2.4829 \times 10^{-2} \\ & =97.7785(\%) \tag{1} \end{align*}$		
	$\begin{equation*} \text { \% Oxidized = } 100-97.7785=2.221(\%) \tag{1} \end{equation*}$ OR		
	Amount oxidized $\begin{align*} & =2.4829 \times 10^{-2}-2.42775 \times 10^{-2} \\ & =5.516 \times 10^{-4} \quad(\mathrm{~mol}) \tag{1} \end{align*}$		
	$\begin{align*} & \text { \% Oxidized } \\ & =5.516 \times 10^{-4} \times 100 / 2.4829 \times 10^{-2} \\ & =2.221(\%) \tag{1} \end{align*}$		
	ROUTE 2 (via mass)		
	$\begin{align*} \text { mass from titration } & =2.42775 \times 10^{-2} \times 277.9 \\ & =6.7467(\mathrm{~g}) \tag{1} \end{align*}$		
	$\begin{align*} & \% \text { of } \mathrm{Fe}^{2+} \text { remaining at titration } \\ & =100 \times 6.7467 / 6.9 \\ & =97.7785(\%) \tag{1} \end{align*}$		
	\% Oxidized $=100-97.7785=2.221$ (\%) (1)		
	Ignore SF except 1 SF unless justified in b(iv)		
	Correct answer no working scores 5 marks		
	90.22% obtained from failure to multiply by 10 scores 4 marks		

Question Number	Acceptable Answers	Reject	Mark
$\begin{gathered} 4 \\ \text { (b) (iv) } \end{gathered}$	3 (significant figures) because all the data (except $A_{r}(H)$) is given to 3 SF OR 2 (significant figures) because the least precise data $\left(\mathrm{A}_{\mathrm{r}}(\mathrm{H})\right)$ is 2 SF OR 2 (significant figures) because the data is to three figures. After processing only two figures are certain. OR 1 (significant figure) because of the subtraction of two similar numbers.		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (c) (i)}$	Alkali neutralizes the acid shifting the equilibrium to the left		1
	OR Alkali neutralizes the acid so E value for half cell becomes less (than +2.20 V) ALLOW 'Reacts with' and 'removes' for 'neutralizes' IGNORE Just "shifts equilibrium to the left"		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$	$4 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Fe}^{2+}+\mathrm{FeO}_{4}{ }^{2-}+8 \mathrm{H}^{+}$ OR (c)(ii) Multiples Species (1) balance (1) Ignore state symbols even if incorrect	2	

Question Number	Acceptable Answers	Reject	Mar k
(c)(iii)	Required half cell value is $\mathrm{E}^{\theta}=(+) 0.77$ $\mathrm{E}_{\text {cell }}^{\ominus}=(0.77-2.20=)-1.43 \mathrm{~V}$ ($\mathrm{E}^{\ominus}{ }_{\text {cell }}$ negative so disproportionation) not feasible TE on calculated negative value of E^{\ominus} cell No TE on positive value for $E^{\ominus}{ }_{\text {cell }}$ OR Correct application of anti-clockwise rule e.g. $\begin{aligned} & \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq}) \quad \mathrm{E}^{\ominus}=+0.77 \mathrm{~V} \\ & \mathrm{FeO}_{4}{ }^{2-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+2.20 \mathrm{~V} \end{aligned}$ Equations in order of increasing E^{\ominus} value and arrows shown Anti-clockwise rule shows top reaction moves left and bottom reaction moves right so disproportionation not feasible		2

