Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	First mark: Mass of an atom/mass of an isotope (of an element) IGNORE any references to average or (weighted) mean Second mark: relative to $1 / 12^{\text {th }}$ the mass of a ${ }^{12} \mathrm{C}$ atom (1) NOTE: The second mark is awarded for any mention of ${ }^{12} \mathbf{C}$	Mass of (all the) isotopes /atoms 'Mass of an	2
IGNORE throughout the candidate's answer any references to 'moles' or '1 mol' or '12 g' Mark the two points independently			

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	$\begin{align*} & \{(35 \times 75.53)+(37 \times 24.47)\} \div 100 \\ & =35.4894 \\ & =35.49 \tag{1} \end{align*}$ Answer to 4 s.f. only. Correct answer no working IGNORE units of any kind (e.g. 'g' ' $\mathrm{g} \mathrm{mol}^{-1 \text { ' ' }} \mathrm{amu}$ ', etc.)		2

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	(1)		2
	$\begin{equation*} { }^{35} \mathrm{Cl}^{-37} \mathrm{Cl}^{(+)} \tag{1} \end{equation*}$		
	$\begin{aligned} & \text { ALLOW } \\ & \left({ }^{35} \mathrm{Cl}+{ }^{37} \mathrm{CI}\right)^{(+)} \text {and/or } \\ & \left({ }^{37} \mathrm{Cl}+{ }^{35} \mathrm{Cl}\right)^{(+)} \end{aligned}$		
	$\begin{aligned} & \text { OR } \\ & \left({ }^{(37} \mathrm{Cl} \mathrm{Cl}^{35} \mathrm{Cl}^{(+)} \text {and/or }\left({ }^{37} \mathrm{Cl}^{35} \mathrm{CI}\right)^{(+)}\right. \\ & \text {OR } \\ & \left({ }^{35} \mathrm{Cl} \text { and }{ }^{37} \mathrm{CI}\right)^{(+)} \text {and/or } \\ & \left({ }^{(77} \mathrm{Cl} \text { and }{ }^{35} \mathrm{Cl}\right)^{(+)} \end{aligned}$		
	NOTE: The + charge is not needed on this ion		
	IGNORE extra + charges, so ALLOW ${ }^{35} \mathrm{Cl}^{+37} \mathrm{Cl}^{+}$and/or ${ }^{37} \mathrm{Cl}^{+35} \mathrm{Cl}^{+}$		

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	$\begin{align*} & \text { Amount } \mathrm{Na}=1.73(\mathrm{~g}) \div 23\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & =0.075(22)(\mathrm{mol}) \\ & \text { Amount } \mathrm{O}=1.20(\mathrm{~g}) \div 16\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & =0.075(\mathrm{~mol}) \tag{1}\\ & \text { IGNORE sf, even if } 1 \mathrm{sf} \end{align*}$ NaO Correct answer no working NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e. Amount $\mathrm{Na}=23 \div 1.73=13.3$ Amount $\mathrm{O}=16 \div 1.20=13.3$ scores second mark only for NaO if obtained by incorrect working OR e. Use of atomic numbers gives the Na : O ratio as 0.157 : 0.150 and an empirical formula of NaO . This scores (1) overall (i.e. the 2nd mark). OR e. Use of atomic number ONLY for Na (i.e. $\mathrm{Na}=11$) gives the Na : O ratio as $0.157: 0.075$ and an empirical formula of $\mathrm{Na}_{2} \mathrm{O}$. This scores (1) overall (i.e. the 2 nd mark). NOTE: Use of $\mathbf{O}=32$ gives $\mathrm{Na}_{2} \mathrm{O}$ and scores second mark	$\mathrm{Na}_{2} \mathrm{O}_{2}$	2
Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	($\mathrm{NaO}=39$ hence molar mass twice that of $\mathrm{NaO} \therefore$) $\text { so } \mathbf{N a}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$	'2NaO'	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	$2 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})$ All species correct State symbols and balancing NOTE: $2^{\text {nd }}$ mark is conditional on correct species. NOTE: $2 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaO}(\mathrm{~s})$ scores (1) $\mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{NaO}_{2}(\mathrm{~s})$ scores (1) $4 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})$ scores (2)		2

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	Moles of $\mathrm{O}_{2}=0.075 \div 2=0.0375$ OR $1.2 \div 32=0.0375(\mathrm{~mol})$ $0.0375 \mathrm{~mol} \times 24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ $\begin{equation*} =0.9(0)\left(\mathrm{dm}^{3}\right) \tag{1} \end{equation*}$ ALLOW $900 \mathbf{c m}^{3}$ (units must be present here) Correct answer no working OR Moles of $\mathrm{Na}=1.73 \div 23=0.075217$ $=$ moles of O Moles of $\mathrm{O}_{2}=0.075217 \div 2=$ 0.0376085 $0.0376085 \times 24=0.903\left(\mathrm{dm}^{3}\right)$ or $903 \mathbf{c m}^{\mathbf{3}}$ IGNORE s.f., including ONE s.f. NOTE: If number of moles $\times 24\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)$ is clearly evident and correctly calculated in stated units, award second mark		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (v)}$	$0.0375 \times 6.02 \times 10^{23}$ $\left(=2.2575 \times 10^{22}\right.$ (molecules)) $=2.26 \times 10^{22}$ (molecules) IGNORE s.f. unless 1 s.f.		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(b)	Sodium might react with nitrogen in the air/sodium forms a nitride/ nitrogen (gas) is present in the air (which reacts with the sodium) OR sodium might form a different oxide (e.g. $\mathrm{Na}_{2} \mathrm{O}$ or allow NaO_{2}) NOTE: If nitrogen / N_{2} is mentioned as part of a 'list' of substances that can be present in air, award the mark	J ust 'very reactive' OR 'very explosive’ sodium forms $\mathrm{Na}_{2} \mathrm{O}_{2}$ alone References to hydrogen in the air Just 'reacts with other substances in the air' (as nitrogen not identified Sodium nitrate formation J ust sodium hydroxide formation	1

Question Number	Acceptable Answers	Reject	Mark
3(b)	$\begin{aligned} (12 \times 4+1 \times 8+16 \times 3+14 \times 2) n & =132 \\ n & =1 \end{aligned}$ So molecular formula is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~N}_{2}$ Some element of working must be shown TE from (a) of nitrogen error can be given only if: $\begin{aligned} (12 \times 4+1 \times 8+16 \times 4+14) n & =132 \\ n & =0.98 \end{aligned}$ (which is approximately 1) TE from (a) of hydrogen error can be given only if: $\begin{array}{r} (12 \times 4+1 \times 4+16 \times 3+14 \times 2) n=132 \\ n=1.03 \end{array}$ (which is approximately 1) TE from (a) of nitrogen and hydrogen error can be given only if: $\begin{aligned} (12 \times 4+1 \times 4+16 \times 4+14) n & =132 \\ n & =1.015 / 1.02 \end{aligned}$ (which is approximately 1)		1

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	\mathbf{Y} reacts with $\mathrm{HCl} /$ acid so it is an amine /contains $\mathrm{NH}_{2} / \mathrm{CO}_{2}{ }^{-}$ It reacts with alkali/ NaOH so it is a carboxylic acid/contains $\mathrm{CO}_{2} \mathrm{H} / \mathrm{NH}_{3}{ }^{+}$ It forms a purple colour/reacts with ninhydrin so it is an amino acid OR As it is an amine/contains $\mathrm{NH}_{2} / \mathrm{CO}_{2}^{-}$it will react with $\mathrm{HCl} /$ acid As it is a carboxylic acid/contains $\mathrm{CO}_{2} \mathrm{H} / \mathrm{NH}_{3}{ }^{+}$ it will react with alkali/ NaOH As it is an amino acid so it forms a purple colour/reacts with ninhydrin Each marking point is independent and requires both the functional group and the test NOTE: It is an amino acid so it reacts with acid and alkali (with neither of first two points)	Just ... it is a base Just ... it is an acid ...it is amphoteric (alone)	3

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	 ALLOW OH OR 2-aminoethanoic aci aminoethanoic acid/glycine Mark independently	$\mathrm{C}-\mathrm{H}-\mathrm{O}$ if bond is clearly to H 1- aminoethanoi acid	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 3 \\ & (c)(i i i) \end{aligned}$	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$		1
	Or $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$		
	Or $\mathrm{HOCOCH}_{2} \mathrm{NHOCCH}_{2} \mathrm{NH}_{2}$		
	ALLOW		
	Or reversed displayed formula		
	ALLOW ionic formulae with $\mathrm{H}_{3} \mathrm{~N}^{+}$and $\mathrm{CO}_{2}{ }^{-}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a)}$	Do not penalize the use of $\mathrm{A}_{\mathrm{r}}(\mathrm{Mg})=$ 24.3 at any stage in this question. Penalize SF errors (1 SF, incorrect SF (eg. 0.02) and incorrect rounding to 2 SF (e.g. 0.016)) only once in parts $(\mathrm{a} \mathrm{-} \mathrm{d)}$ Allow 0.0166 Allow fractions (e.g. 1/60)		$\mathbf{1}$
	Amount $\mathrm{Mg}=(0.4 \div 24)=0.016666$ $=0.0167(\mathrm{~mol})$		
	Allow Amount $\mathrm{Mg}=(0.4 \div 24.3)=$ $0.016461=0.0165(\mathrm{~mol})$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (b)}$	Amount $\mathrm{HCl}=1.5 \times 22.2 / 1000=$ $0.033333=0.0333(\mathrm{~mol})$		$\mathbf{1}$
	Allow Amount $\mathrm{HCl}=2 \times$ answer in (a)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (c)}$	Amount of $\mathrm{H}_{2}=400 \div 24000=$ $0.016666=0.0167(\mathrm{~mol})$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (d)}$	Ratio mol Mg: $\mathrm{HCl}: \mathrm{H}_{2}=0.0167$ $(0.165): 0.0333: 0.0167$ $=1: 2: 1$	Just stating the molar ratio	$\mathbf{1}$
	Allow answers in which the mole ratios of the reactant and products are compared separately		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (e)}$	$\mathrm{Mr}_{\mathrm{r}}\left(\mathrm{MgCl}_{2}\right)=24+2 \times 35.5=95$ (1)		
$\mathrm{Mol} \mathrm{MgCl}_{2}=(\mathrm{mol} \mathrm{Mg})=0.0166666$			
$(\mathrm{or} 0.0167) \mathbf{(1)}$			
$\mathrm{Mass} \mathrm{MgCl}_{2}=95 \times 0.0166666=1.58$			
$(\mathrm{~g}) \mathbf{3 ~ s f (1)}$			
	Or $95 \times 0.0167=1.59(\mathrm{~g}) 3 \mathrm{sf}$ Or $95.3 \times 0.0166666=1.59$ Or $95 \times 0.0165=1.58$ Or $95.3 \times 0.0165=1.57$ Correct answer with no working scores (3) TE on $17(\mathrm{a})$	$\mathbf{3}$	

