Question Number	Acceptable Answers	Reject	Mark
1(a)	First mark: Mass of an atom/mass of an isotope (of an element) (1) IGNORE any references to average or	Mass of (all the) isotopes /atoms 'Mass of an element'	2
	(weighted) mean Second mark: relative to 1/12 th the mass of a ¹² C atom (1)		
	NOTE: The second mark is awarded for any mention of ¹² C IGNORE throughout the candidate's answer any references to 'moles' or '1 mol' or '12 g' Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	{(35 x 75.53) + (37 x 24.47)} ÷ 100 (1) = 35.4894 = 35.49 Answer to 4 s.f. only.		2
	IGNORE units of any kind (e.g. 'g' 'g mol ⁻¹ ' 'amu', etc.)		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)	$^{35}\text{Cl}_2^+/(^{35}\text{Cl} - ^{35}\text{Cl})^+$ (1)	⁷⁰ Cl ₂ ⁺ ⁷⁴ Cl ₂ ⁺	2
	$^{37}\text{Cl}_2^+/(^{37}\text{Cl} - ^{37}\text{Cl})^+$ (1)		
	ALLOW (35CI + 35CI) + and/or (37CI + 37CI) + OR (35CI35CI) + and/or (37CI37CI) + OR (35CI and 35CI) + and/or (37CI and 37CI) + If the 'formal' charge is omitted on either ion (or both the ions), then award (1) mark only.		
	NOTE: 35CI+ 35CI+ and 37CI+ 37CI+ scores (1) as each ion has an extra + charge. 235CI+ and 237CI+ scores (1) Accept mass number written as superscript to right of symbol.	2 ³⁵ Cl and/or 2 ³⁷ Cl scores (0)	

Question Number	Acceptable Answers	Reject	Mark
2 1 (b)(iii)	(1)		2
	35CI —37CI ⁽⁺⁾ (1) ALLOW (35CI + 37CI) ⁽⁺⁾ and/or (37CI + 35CI) ⁽⁺⁾ OR (37CI ³⁵ CI) ⁽⁺⁾ and/or (37CI ³⁵ CI) ⁽⁺⁾ OR (35CI and 37CI) ⁽⁺⁾ and/or (37CI and 35CI) ⁽⁺⁾		
	NOTE: The + charge is not needed on this ion IGNORE extra + charges, so ALLOW 35CI+ 37CI+ and/or 37CI+ 35CI+		

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	Amount Na = 1.73 (g) \div 23 (g mol ⁻¹) = 0.075(22) (mol) Amount O = 1.20 (g) \div 16 (g mol ⁻¹) = 0.075 (mol) (1) IGNORE sf, even if 1 sf		2
	NaO (1)	Na ₂ O ₂	
	Correct answer no working (2)		
	NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e. Amount Na = $23 \div 1.73 = 13.3$ Amount O = $16 \div 1.20 = 13.3$ scores second mark only for NaO if obtained by incorrect working OR e. Use of atomic numbers gives the Na: O ratio as 0.157: 0.150 and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e. Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na: O ratio as 0.157: 0.075 and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of $\mathbf{O} = 32$ gives Na ₂ O and scores second mark		

Question	Acceptable Answers	Reject	Mark
Number			
2 (a)(ii)	(NaO = 39 hence molar mass twice	'2NaO'	1
	that of NaO ∴)		
	so Na ₂ O ₂		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	$2Na(s) + O_2(g) \rightarrow Na_2O_2(s)$		2
	All species correct (1)		
	State symbols and balancing (1)		
	NOTE: 2 nd mark is conditional on correct species.		
	NOTE: $2Na(s) + O_2(g) \rightarrow 2NaO(s)$ scores (1)		
	$Na(s) + O_2(g) \rightarrow NaO_2(s)$ scores (1)		
	$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$ scores (2)		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	Moles of $O_2 = 0.075 \div 2 = 0.0375$ OR $1.2 \div 32 = 0.0375$ (mol) (1) 0.0375 mol x 24 dm ³ mol ⁻¹ $= 0.9(0)$ (dm ³) (1) ALLOW 900 cm ³ (units must be		2
	present here)		
	Correct answer no working (2) OR		
	Moles of Na = $1.73 \div 23 = 0.075217$ = moles of O Moles of O ₂ = $0.075217 \div 2 =$ 0.0376085 $0.0376085 \times 24 = 0.903 \text{ (dm}^3)$ or 903 cm^3		
	IGNORE s.f., including ONE s.f.		
	NOTE: If number of moles x 24 (dm³ mol⁻¹) is clearly evident and correctly calculated in stated units, award second mark		

Question Number	Acceptable Answers	Reject	Mark
2(a)(v)	$0.0375 \times 6.02 \times 10^{23}$ (= 2.2575 x 10 ²² (molecules))		1
	= 2.26 x 10 ²² (molecules)		
	IGNORE s.f. unless 1 s.f.		

Question Number	Acceptable Answers	Reject	Mark
2(b)	Sodium might react with nitrogen in the air/sodium forms a nitride/ nitrogen (gas) is present in the air (which reacts with the sodium) OR sodium might form a different oxide (e.g. Na ₂ O or allow NaO ₂) NOTE: If nitrogen / N ₂ is mentioned as part of a 'list' of substances that can be present in air, award the mark	Just 'very reactive' OR 'very explosive' sodium forms Na ₂ O ₂ alone References to hydrogen in the air Just 'reacts with other substances in the air' (as nitrogen not identified Sodium nitrate formation Just sodium hydroxide	1
		formation	

Question Number	Acceptable Answers		Reject	Mark
3 (a)	Route 1 by mol of H, C and N			5
	$\frac{0.072}{18} = 0.004 \text{ mol water}$			
	OR 0.008 mol H(atoms)			
	And			
	$\frac{0.176}{44} = 0.004 \text{ mol carbon (dioxide)}$	(1)		
	$\frac{24.0}{24000}$ = 0.001 mol nitrogen N ₂			
	OR			
	0.002 mol N(atoms)	(1)		
	Mass of H + mass of C + mass of N = 0.008 + 0.004 x 12 + 0.028 = 0.084 g	(1)		
	mass of oxygen = 0.132 - (0.008 + 0.004 x 1			
	= 0.048 g	028)		
	amount of oxygen = $0.048 = 0.003$ mol 16	(1)		
	empirical formula is C ₄ H ₈ O ₃ N ₂	(1)		
	Route 2 by mass of H, C and O calculated one step	in		
	mass of H = $2/18 \times 0.072 = 0.008 g$	(1)		
	mass of $C = 12/44 \times 0.176 = 0.048 g$	(1)		
	mass of N = $24/24000 \times 28 = 0.028 g$	(1)		
	mass of O = 0.132 - (0.008 + 0.048 + 0.028) 0.048 g) =		
	moles of $O = 0.003$	(1)		
	moles of $H = 0.008$			

moles of C = 0.004moles of N = 0.002empirical formula is C₄H₈O₃N₂ (1) Route 3 Percentage by mass of each element in 0.132 g First three marks by either method above. Then percentages are: H - 6.06C - 36.36N - 21.21So O is 100 - (6.06 + 36.36 + 21.21) =100 - 63.63 = 36.37Mole ratios O - 2.27 - allow = or - 0.02(1) H - 6.06, C - 3.03, N - 1.515Dividing by smallest gives H - 4, C - 2, N - 1, O - 1.5empirical formula is C₄H₈O₃N₂ (1) The following transferred errors are allowed: If nitrogen gas taken as N, first two marks can still be awarded for all methods Then mass of nitrogen is 0.014 g This gives mass of oxygen as 0.062 g and amount of oxygen as 0.003875 mol (1) now empirical formula is C₄H₈O₄N (1) **OR** percentage method: N - 10.61%

O – 46.97%

Mole ratio	
N - 0.7575	
O – 2.935	(1)
empirical formula is C ₄ H ₈ O ₄ N	(1)
Transferred error for hydrogen	
Two from first three marks still awarde	ed
Then amount of hydrogen is 0.004 mo	ol
This gives 0.003125 mol oxygen empirical formula is C ₄ H ₄ O ₃ N ₂	(1)
Both the above nitrogen and hydro	ogen errors
Award 1 mark for correct mass of carb correct moles of carbon	oon or
Then mass of nitrogen is 0.014 g	
Then mass of hydrogen is 0.004 g	
This gives 0.004125 mol oxygen	(1)
Empirical formula is C ₄ H ₄ O ₄ N	(1)

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)	$(12 \times 4 + 1 \times 8 + 16 \times 3 + 14 \times 2)$ n = 132		1
	n = 1		
	So molecular formula is C ₄ H ₈ O ₃ N ₂		
	Some element of working must be shown		
	TE from (a) of nitrogen error can be given only if : (12 x 4 + 1 x 8 + 16 x 4 + 14) n = 132 n = 0.98		
	(which is approximately 1)		
	TE from (a) of hydrogen error can be given only if:		
	(12 x 4 + 1 x 4 + 16 x 3 + 14 x 2)n = 132 n = 1.03		
	(which is approximately 1)		
	TE from (a) of nitrogen and hydrogen error can be given only if :		
	$(12 \times 4 + 1 \times 4 + 16 \times 4 + 14)$ n = 132		
	n = 1.015/1.02		
	(which is approximately 1)		

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	Y reacts with HCI/acid so it is an amine /contains NH_2/CO_2 (1)	Just it is a base	3
	It reacts with alkali/NaOH so it is a carboxylic acid/contains CO_2H/NH_3^+ (1)	Just it is an acid	
	It forms a purple colour/reacts with ninhydrin so it is an amino acid (1)		
	OR		
	As it is an amine/contains NH_2/CO_2^- it will react with HCI/acid (1)		
	As it is a carboxylic acid/contains CO ₂ H/NH ₃ ⁺ it will react with alkali/NaOH (1)		
	As it is an amino acid so it forms a purple colour/reacts with ninhydrin (1)		
	Each marking point is independent and requires both the functional group and the test		
	NOTE: It is an amino acid so it reacts with acid and alkali (with neither of first two points) (1)	it is amphoteric (alone)	

Question Number	Acceptable Answers		Reject	Mark
3(c)(ii)	H H O-H	(1)	C-H-O if bond is clearly to H	2
	2-aminoethanoic aci aminoethanoic acid/glycine Mark independently	(1)	1 - aminoethanoi acid	

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iii)	H ₂ NCH ₂ CONHCH ₂ CO ₂ H		1
	Or NH ₂ CH ₂ CONHCH ₂ CO ₂ H		
	Or HOCOCH ₂ NHOCCH ₂ NH ₂		
	ALLOW		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Or reversed displayed formula		
	ALLOW ionic formulae with H ₃ N ⁺ and CO ₂ ⁻		

Question Number	Acceptable Answers	Reject	Mark
4 (a)	Do not penalize the use of A_r (Mg) = 24.3 at any stage in this question. Penalize SF errors (1 SF, incorrect SF (eg. 0.02) and incorrect rounding to 2 SF (e.g. 0.016)) only once in parts (a – d) Allow 0.0166 Allow fractions (e.g. 1/60)		1
	Amount Mg = $(0.4 \div 24) = 0.016666$ = 0.0167 (mol) Allow Amount Mg = $(0.4 \div 24.3) =$ 0.016461 = 0.0165 (mol)		

Question Number	Acceptable Answers	Reject	Mark
	Amount IICL		1
4 (b)	Amount HCl = 1.5 x 22.2/1000 =		1
	0.033333 = 0.0333 (mol)		
	Allow		
	Amount HCl = $2 \times answer in (a)$		

Question Number	Acceptable Answers	Reject	Mark
4 (c)	Amount of $H_2 = 400 \div 24\ 000 = 0.016666 = 0.0167\ (mol)$		1

Question Number	Acceptable Answers	Reject	Mark
4 (d)	Ratio mol Mg: HCl: H ₂ = 0.0167 (0.165): 0.0333: 0.0167 = 1:2:1 Allow answers in which the mole ratios of the reactant and products	Just stating the molar ratio	1
	are compared separately		

Question Number	Acceptable Answers	Reject	Mark
4 (e)	M_r (MgCl ₂) = 24 + 2 x 35.5 = 95 (1) Mol MgCl ₂ = (mol Mg) = 0.0166666 (or 0.0167) (1) Mass MgCl ₂ = 95 x 0.0166666 = 1.58 (g) 3 sf (1) Or 95 x 0.0167 = 1.59 (g) 3sf Or 95.3 x 0.0166666 = 1.59 Or 95 x 0.0165 = 1.58 Or 95.3 x 0.0165 = 1.57 Correct answer with no working scores (3) TE on 17(a)		3