Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) ~}$	Pale/ light and green/ yellow	clear yellow green any other colour	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	Red/brown (solution)	Purple (or in combination with red or brown) Pale yellow Orange (or in combination with red or brown) Reject any other colours alone or in combination Grey/black (or any other colour alone or in combination) solid	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) /(\mathrm{s})$ Entities ($\mathbf{1)}$ Balancing and all four state symbols Dependent on correct entities (1)		$\mathbf{2}$
$\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) /(\mathrm{s})$ 1 max $\mathrm{K}^{+}(\mathrm{aq})$ on both sides of otherwise correct equation 1 max			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	Starch (1)	Any other indicator e.g. methyl orange/ phenolphthalein $=0 / 2$ (c)	Colourless to blue/black Blue/black to colourless Dependent on starch indicator (1) Blue/black to clear Any mention of purple
Accept: no indicator needed (1) Yellow to colourless (1) Blank for indicator and yellow to colourless 1max			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	(ii) - (vi) General comme Allow correct answers with no working in all parts N.B. Mark each part to mark scheme answer first then allow TE from earlier parts. Minimum correct to 2SF. Penalise SF for 1SF once only. But incorrect rounding e.g. 4.525 to 4.52 is penalised once separately as well. Penalise wrong units once only as well. (Mean titre $=9.05)$ $\frac{9.05 \times 0.01}{1000}$ $=9.05 \times 10^{-5} / 0.0000905(\mathrm{~mol})$ Allow $9.1 \times 10^{-5} / 0.000091(\mathrm{~mol})$	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
1	$\begin{gathered} \left(\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow\right) \\ 2 \mathbf{I}^{-}((\mathrm{aq}))+\underset{\mathbf{(1)}}{\mathbf{S}_{4} \mathbf{O}_{6}{ }^{2-}((\mathrm{aq}))} \end{gathered}$		2
(c) (iii)	Marks stand alone for entities with balancing		
	Either of these on their own scores 1 mark regardless of anything else that is written		
	Multiples/fractions of equation allowed		
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$\frac{9.05 \times 10^{-5}}{2}$		$\mathbf{1}$
$\mathbf{(c) (i v) ~}=4.525 \times 10^{-5} / 0.00004525(\mathrm{~mol})$			
	Allow $4.53 \times 10^{-5} / 0.0000453$ etc		
Allow TE ans (ii)			
	Accept TE from (iii) if you see it		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$4.525 \times 10^{-5} / 0.00004525(\mathrm{~mol})$ Allow TE $=$ ans (iv) (Allow 'ans (iv)' with no numbers for this part only]	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$4.525 \times 10^{-5} \times \frac{1000}{10}=$	$\mathbf{1}$	
$\mathbf{(c) (v i)}$	$4.525 / 4.53 \times 10^{-3} / 0.004525 / 0.00453$ $\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	Accept TE ans (v) $\times 100$ [a calculated number must be given]	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ $\mathbf{(d) (i) ~}$	Lilac Allow (light) purple or mauve	Violet Reject any other colours alone or in combination	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$2 \mathrm{~K}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}$	K_{2} and/or KCl_{2}	$\mathbf{1}$
$\mathbf{(d) (i i)}$	Accept multiples/fractions Ignore state symbols even if incorrect Ignore correct charges on ions in KCl	Charges on reactants K and/or Cl_{2}	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	Hydrogen chloride	Hydrochloric acid	$\mathbf{1}$
(e)(i)	This may be accompanied by HCl	$\mathrm{HCl} / \mathrm{HCl}(\mathrm{g}) / \mathrm{HCl}$ (gas) alone SO_{2} $\mathrm{H}_{2} \mathrm{~S}$ Anything else	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (e)(ii)	Dissolves in moisture/water/water vapour (in the air) Or reacts with moisture/water/water vapour (in the air)	HCl condenses	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$\mathrm{NH}_{4} \mathrm{Cl} /$ Ammonium chloride/ ClNH_{4}	Ammonia chloride / $\mathrm{NH}_{3} \mathrm{Cl}$	$\mathbf{1}$
	$\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}^{-} / \mathrm{H}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-} / \mathrm{Cl}^{-} \mathrm{NH}_{4}{ }^{+}$		
Ignore any states even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 1 \\ & (f)(i) \end{aligned}$	Any one of: Phosphorus(V) chloride/pentachloride Phosphorus(III) chloride/trichloride Allow (III/V) anywhere Concentrated hydrochloric acid Hydrogen chloride (gas) Sodium/potassium chloride and concentrated sulfuric acid Thionyl chloride Allow correct formula(e) for all above But note: conc $\mathrm{HCl} /$ conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	Phosphorus chloride Hydrochloric acid/ $\mathrm{HCl} /$ $\mathrm{HCl}(\mathrm{aq})$ Chlorine	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)	Mark independently	From: clear To: magenta / purple / cerise	2
	From: colourless (1) To: pink / (pale) red (1) If colour change wrong way round max (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b	(Titres 2, 3 and 4) are concordant / within $0.2\left(\mathrm{~cm}^{3}\right)$ / within $0.1\left(\mathrm{~cm}^{3}\right) /$ consistent OR Titre 1 is rough / trial / a rangefinder / too far out / overshot ALLOW Titre 1 is an outlier / is anomalous	Just "very similar" / within 0.05 / within 0.5 Titre 1 "very different" Just "not accurate" "Titration 1 is a control experiment"	1

Question Number	Acceptable Answers	Reject	Mark
2(c)	$28.00\left(\mathrm{~cm}^{3}\right) / 28.0\left(\mathrm{~cm}^{3}\right) / 28\left(\mathrm{~cm}^{3}\right)$	$28.14\left(\mathrm{~cm}^{3}\right) /$ $28.1\left(\mathrm{~cm}^{3}\right) /$ $28.13\left(\mathrm{~cm}^{3}\right)$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (d) (i)}$	$\frac{0.100 \times 28.00}{1000}=\mathbf{0 . 0 0 2 8 / 2 . 8 \times 1 0 ^ { - 3 } (\mathrm { mol })}$ ALLOW TE from (c) IGNORE sf except one sf	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (d) (i i) ~}$	$\mathbf{0 . 0 0 2 8 / 2 . 8 \times 1 0 ^ { - \mathbf { 3 } } (\mathrm { mol })}$ OR Same answer to (d)(i) if TE applied IGNORE sf except one sf	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
2 (d)(iii)	$\left.\frac{0.0028}{0.025}=\mathbf{0 . 1 1 2 (m o l ~ d m}{ }^{-3}\right)$ OR Answer to $\frac{(d)(\text { (ii) }}{0.025}$ if TE applied from (d)(ii)	$\mathbf{1}$	
	IGNORE sf except one sf		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (d) (i v) ~}$	$10 \times 0.112=\mathbf{1 . 1 2}\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$		
OR			
	Answer to (d)(iii) $\times 10$ if TE applied from (d)(iii) IGNORE sf except one sf	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (d) (v) ~}$	$1.12 \times 60=\mathbf{6 7 . 2}\left(\mathrm{g} \mathrm{dm}^{-3}\right)$ OR Answer to (d)(iv) $\times 60$ if TE applied from (d)(iv) IGNORE sf except one sf	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark		
2 (e)	NOTE: answer must refer to making up the diluted solution and not the titration				
NOTE: the Reason mark must be correctly linked to the Improvement Improvement: Use a pipette / burette to measure acid (solution) (1)	Use of volumetric flask for initial measurement of volume of vinegar solution				
	Reason: Pipette / burette more accurate (than a measuring cylinder) (1)	"more ALLOW "more precise"	reliable"	\quad	OR
:---					

Question Number	Acceptable Answers	Reject	Mark
2 (f)(i)	Z / between 27.85 and $28.05\left(\mathrm{~cm}^{3}\right)$ ALLOW $27.95 \pm 0.10\left(\mathrm{~cm}^{3}\right)$		1

Question Number	Acceptable Answers	Reject	Mark
2 (f)(ii)	Any one of the following / a statement equivalent to: - overshoots/misses end-point - water left in burette / pipette - air lock below tap in burette / air in pipette - burette not vertical - alkali not at stated concentration - leaking tap - not reading meniscus at eye-level - funnel left in top of burette - not reading level against a white background - not reading meniscus correctly - washing pipette between titres - washing the flask with the solution that will go in it - not swirling flask / mixture IGNORE "errors in calculation"	"water left in conical flask" just "measurements may be inaccurate" "there could be uncertainty with other equipment" "contamination of the vinegar"	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}(\mathrm{a})$ $\mathbf{(i)}$	$2 \mathrm{Al}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{AlO}_{2}^{-}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$	$2 \mathrm{O}_{2}^{2-}(\mathrm{aq})$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	$\left(\begin{array}{ll}\underline{2 \times 10}=0.02 / 2 \times 10^{-2} \\ 1000 \\ \text { (ai) }\end{array}\right.$		

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array}
$$ \& Acceptable Answers \& Reject \& Mark \\
\hline \mathbf{3} \& \begin{array}{l}0.02 / 2 \times 10^{-2} \\

(a) (iii)\end{array} \& Accept TE answer to (ii)\end{array}\right]\)| $\mathbf{1}$ |
| :--- |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	$0.02 \times 27.0=0.54 / 5.4 \times 10^{-1}(\mathrm{~g})$ (a)(iv) TE answer to (iii) OR (ii) $\times 27.0$ Ignore sf except 1	Other unit	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	$(1.1 \times 0.54)=0.59(4) / 5.9(4) \times 10^{-1}(\mathrm{~g})$ TE answer to (iv) $\times 1.1$ (a)(v) Ignore sf except 1 Only penalise sf once	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(vi)	Potassium hydroxide / KOH (solution) is corrosive / burns / caustic OR KOH damages / harms / is harmful to / dissolves / reacts with skin / eye(s) OR KOH in eye(s) I gnore Harmful, irritant, highly reactive alone Hydrogen / $\mathbf{H}_{\mathbf{2}}$ is flammable / explodes / explosive Allow mention of both potassium hydroxide and hydrogen alone scores Allow Al foil can cut your skin Correct answer with additional incorrect chemistry e.g. KOH is oxidising so corrosive scores (0)	Toxic, carcinogenic, alone or in combination with correct answer Burns alone Additional chemicals	2
Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 3 \\ & \text { (b)(i) } \end{aligned}$	$\begin{aligned} & \mathrm{KAIO}_{2}(\mathrm{aq})+\mathbf{2} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{KAI}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{aq})+ \\ & \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { I })} \end{aligned}$ Allow multiples		1
Question Number	Acceptable Answers	Reject	Mark
3	$\frac{2 \times 1000 \times 0.02}{1}=40\left(\mathrm{~cm}^{3}\right)$ Allow 0.04(0) dm ${ }^{3}$ TE answer to (a)(ii) $\times 2000$ and TE from (b)(i)		1

Question Number	Acceptable Answers	Reject	Mark
3 (b) (iii)	Litmus (paper / solution) Red / pink (in acid) OR any other named acid-base indicator including universal indicator (1) with a correct acidic colour (1) NB phenolphthalein must be spelt correctly to score (1) and no mark for colour Notice that other indicators only require recognisable spellings Red litmus turns blue scores for the indicator OR pH meter / universal indicator (1) with value < 7 (1) NB measure pH alone (0) $\mathrm{pH}<7$ (1) OR add a (metal) carbonate / suitable metal eg Mg (1) bubbles / fizzing (1) Calculation of amounts / moles of both reactants (1 maximum)		2

Question Number	Acceptable Answers	Reject	Mark
3 (b) (iv)	Each point must be made in full The second and final scoring points, which are asterisked, can only be gained through these statements. Two further marks can be scored for any two of the other four points. 1 Filter (to remove any aluminium / impurities) NB This mark can only be awarded if it is the first action and the mixture is subsequently heated. 2 *Boil / heat / evaporate to reduce the volume of water NB boil / heat to remove water only gets the mark if it is clear, subsequently, that some solution is left 3 Cool / set aside / leave to allow crystals to form 4 Filter OR pick out / remove / take out crystals (to separate) 5 Wash with a little/ cold water 6 *Place between filter papers / dab with paper towel / use dessicator (to dry)	Leave in the sun If boiled to dry stop marking here Heat in oven	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	White / colourless	Any other colours with or without white	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(vi)	$\mathrm{Cr}^{3+} / \mathrm{Fe}^{3+} / \mathrm{Sc}^{3+} / \mathrm{Ga}^{3+}$ Accept any feasible triply positive metal ion Allow B^{3+} Allow any name or symbol for a Group 3 element Allow named existing transition metal ions with (III) after the name (if they exist) Fully correct formula for an alum or intermediate starting entity Eg KGa(SO4 $)_{2} / \mathrm{KGaO}_{2}$	Al^{3+} and anything else	Group 3 element with incorrect charge

Question Number	Acceptable Answers	Reject	Mark
4 (a)	All have the same number of electrons / all have one (s) electron / same electron (1) configuration All have the same number of protons / all (1) have one proton The first has no neutrons, the second one neutron and the third two neutrons Allow deuterium has one more neutron, (1) tritium two more neutrons Ignore references to same atomic number and different mass numbers	3 Different number of neutrons alone	

Question Number	Acceptable Answers	Reject	Mark
4 (b)	Numbers can be on either side or both sides		1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 4 \\ & (c)(i) \end{aligned}$	Molar mass / M(r) / 3+2 / 2+3 $=5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)(1)$ Number of moles $=4 / 5$ $=0.8 \text { (1) }$ 0.8 with correct working, with wrong working, or with no working Allow internal TE if Molar mass clearly indicated and incorrect eg Molar mass / $M(r)=6\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)(\mathbf{0})$ Number of moles $=4 / 6$ $=0.67(1)$	Penalise incorrect units	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(ii)	$24000 \times 0.8=19200\left(\mathrm{~cm}^{3}\right)$ Allow $19.2 \mathbf{~ d m}^{3}$ Allow TE from (c)(i)	Incorrect units	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (d)}$	$\frac{1.0078 \times 99.9850+2.0141 \times 0.0150}{100}$ (1) OR $99.9850+0.0150$	$\mathbf{2}$	
	Notice this working must be shown in full to score first mark. $(=1.007951)$ $=1.0080$ (1) 1.008 max 1 with or without working Correct answer no working (2) Only give second mark for correct answer to 4 decimal places Ignore g mol ${ }^{-1}$	Incorrect units Ig.g.	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$	Single arrow upwards from lowest line to infinity line (allow above or very close below) Allow double headed arrow	More than one line	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(e)(ii)	Hydrogen $1 s^{1}$ and Sodium $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$ Electron numbers may be on lines or subscript. Both have one (s) electron in the outer shell / orbital / sub shell OR (1) same number of electrons / same electron(ic) configuration in outer shell / orbital / sub shell OR falf filled s outer shell	$1 s^{2} 2 s^{1}$	$\mathbf{2}$
Both have an/one unpaired electron in their outer / last shell / orbital / sub shell (1) Second mark depends on one outer shell s electron shown for each electronic configuration	same electron(ic) configuration alone		

Question Number	Acceptable Answers	Reject	Mark
4 (f)	Helium Any two from the following points: Electron removed is closest / close to the nucleus Little shielding, allow no shielding More protons / higher nuclear charge than hydrogen. Allow higher effective nuclear charge NB second and third marks can be gained if hydrogen is given: Electron removed is close / closest to the nucleus	Any other elements	3

