Mark Scheme

Q1.

Question Number	Acceptable Answer	Additional Guidance	Mark
	A description that makes reference to the following points:		(2)
	(add hydrochloric acid / nitric acid then) add barium chloride / barium nitrate (solution) (1)	Ignore omission of acid Do not award just Barium ions / Ba ²⁺	
	white precipitate / white solid (1)	M2 is dependent on M1, with the exception of just Ba ²⁺ given as reagent	

Q2.

Question Number	Answer	Additional Guidance	Mark
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	An explanation that makes reference to the following points:	An answer that states 'covalent bonds break' or 'bonds between atoms break' or refers to 'ions' scores (0) overall	(2)
		Allow reverse argument for M1 and M2	
	from chlorine to iodine / down the group, the number of electrons (in the molecule / atom) increases / changes from 34 to 106 / 17 to 53.	Allow iodine has more / most electron shells (than chlorine and/or bromine)	
	changes from 34 to 106 / 17 to 53 (1)	Ignore 'the size of the atoms /molecules increases from chlorine to iodine'	
		Do not allow incorrect numbers of electrons	
	so the strength of the London / instantaneous dipole-(induced) dipole forces increases / there are more London / instantaneous	Allow iodine has the strongest London force and most energy is needed to separate the molecules	
	dipole-(induced) dipole forces and more energy is needed to separate the molecules (1)	Allow more energy is need to overcome / break the London forces / bonds instead of separate the molecules	
		Allow dispersion forces / van der Waals forces for London forces	
		Ignore higher temperature needed to separate the molecules	
		Do not award dipole-dipole forces / just 'intermolecular forces'	

Q3.

Question Number	Acceptable Answer	Additional Guidance	Mark
	An explanation that makes reference to the following points: Lower than 1 ppm		(4)
	HCIO will be low(er) (1) ineffective (as a disinfectant) (1)	Ignore reference to amount of Cl ₂ being too low M2 dependent on correct M1	
	Higher than 3 ppm HCl will be high(er)		
	(1)	M4 dependent on correct M3 Award effects including corrosive, alters or	
	any relevant effect of increased HCl (1)	lowers pH NB: Do not award high(er) pH Award increases acidity / strongly acidic / toxicity Award any reasonable negative effect on swimmers	
		e.g. irritation / irritant Ignore just 'harmful' / just 'dangerous' Ignore reference to amount of Cl ₂ being too high and its effects	

Q4.

Question Number	Acceptable Answer	Additional Guidance	Mark
	A description that makes reference to the following points:	Allow ammonium hydroxide for ammonia	(2)
	 add (excess) dilute ammonia / dilute NH₃ (to the precipitate) and the precipitate is insoluble /does not dissolve	Ignore pure ammonia / ammonia with no concentration / ammonia gas Allow no change for the observation Allow 'if it dissolves it is not bromide'	
	precipitated Whis (to the precipitate) and it is soluble / dissolves / forms a colourless solution (1)	Allow redissolves for soluble	
		If no other mark is awarded allow (1) for adding dilute and concentrated ammonia with no / incorrect observation(s)	
		Alternative test: add concentrated sulfuric acid (1) brown fumes (1)	1

Q5.

Question Number	Acceptable Answers	Additional Guidance	Mark
	An answer that makes reference to the following point:	Allow equation for the reaction with acid e.g. $2H^+ + CO_3^{2-} \rightarrow H_2O + CO_2$	(1)
	to react with / remove any carbonate / sulfite / sulfate(IV) (ions)	Allow to prevent any other ions forming a precipitate (with barium ions / Ba ²⁺) Allow to rule out the possibility of carbonate / sulfite / sulfate(IV) ions giving a false result Ignore just 'to remove impurities / other (an)ions' / 'react with precipitates' Ignore to dissolve barium carbonate / sulfite Ignore reference to hydrogencarbonate	

Q6.

Question Number	Answer	Additional Guidance	Mark
(i)	An explanation that makes reference to the following points:	Example of equation	(3)
	balanced equation (1)	Br₂(aq) + H₂O(l) → HOBr(aq) + HBr(aq) Allow multiples Allow H ⁺ (aq) + Br ⁻ (aq) for HBr(aq) Allow reversible arrows Ignore state symbols even if incorrect	
	• calculation of E°_{cell} value (1)	E^{\bullet}_{cell} = 1.09 – 1.57 = –0.48 (V) Allow correct answer without calculation	
	• E*cell / answer is negative / <0 and the reaction is not (thermodynamically) feasible (1)	Allow 3 marks for reverse argument HOBr(aq) + HBr(aq) \rightarrow Br ₂ (aq) + H ₂ O(aq) (1) $\mathcal{E}^{\circ}_{cell}$ = 1.57 – 1.09 = (+) 0.48 (V) (1) $\mathcal{E}^{\circ}_{cell}$ is positive / >0 so the reverse of disproportionation is (thermodynamically) feasible (1)	

Question Number	Answer	Additional Guidance	Mark
(ii)	An answer that makes reference to the following point: • disproportionation is an equilibrium system (and although K is very small, there is still a small concentration of disproportionation products) or excess water is used or concentration is not 1 mol dm ⁻³ or HOBr undergoes further disproportionation	Ignore just 'non-standard conditions' Ignore references to activation energy / collision theory Ignore H ⁺ / ions from the water	(1)

Q7.

Question Number	Answer	Additional Guidance	Mark
(i)	balanced equation	Example of equation 3Cl ₂ + 6OH⁻ →5Cl⁻ + ClO₃⁻ + 3H ₂ O Allow multiples	(1)
		Ignore state symbols even if incorrect	

Answer	Additional Guidance	Mark
An explanation that makes reference to the following points: • oxidation number for chlorine changes from 0 to -1 so it is reduced (1) • oxidation number for chlorine changes from 0 to +5	Ignore general definitions of disproportionation Accept oxidation numbers and their changes shown with equation Allow 1 out of 2 marks for three correct oxidation numbers of the chlorine	(2)
	An explanation that makes reference to the following points: • oxidation number for chlorine changes from 0 to -1 so it is reduced (1) • oxidation number for chlorine	An explanation that makes reference to the following points: - oxidation number for chlorine changes from 0 to -1 so it is reduced (1) - oxidation number for chlorine changes from 0 to +5 Allow 1 out of 2 marks for three correct oxidation numbers of the chlorine

Q8.

Question Number	Acceptable Answer	Additional Guidance	Mark
	ClO ₃ - (1)	Allow NaClO ₃ / KClO ₃	(2)
	(Cl is) +5 / 5+ (1)	Allow (+)V	
		Do not award 5 unless +5/5+ seen in the formula or as a label on the formula	

Q9.

Question Number	Answer	Additional Guidance	Mark
	An explanation that makes reference to the following points:	Allow the oxidation numbers written by the species in the table	(3)
		(+)6 only needs to be mentioned once in M1 or M2	
		Allow references to potassium halides / halogens / hydrogen halides instead of halide ions	
		For full marks, the answer must identify iodide as the strongest reducing agent	
	 iodide ions are the strongest reducing agent because iodide ions / I⁻/ (potassium) iodide reduces sulfur (in sulfuric acid) from +6 to 0 in sulfur / -2 in H₂S 	Only 1 oxidation number change is needed. If both are given, both must be correct	
	(1)		
	(whereas) bromide ions / Br / (potassium) bromide reduces sulfur (in sulfuric acid) from +6 to +4 (1)	Allow bromide ions are stronger reducing agents than chloride ions because they are oxidised from -1 to 0	
	(whereas) chloride ions / Cl ⁻ / (potassium) chloride do not reduce sulfuric acid / sulfur / S (as there is no change in oxidation number of Cl or S) (1)	Allow just 'it is not a redox reaction'	

Q10.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	An answer that makes reference to the following points: • the covalent bond in hydrogen chloride changes to an ionic bond in aqueous solution	Both types of bond required Accept covalent bond breaks, ions are formed Accept HCl(g) → H ⁺ (aq) + Cl ⁻ (aq) or HCl(g) + H ₂ O(l) → H ₃ O ⁺ (aq) + Cl ⁻ (aq)	(1)

Question Number	Acceptable Answer	Additional Guidance Ma		
(ii)	correct species on each (1) side of equation	Example of equation: $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s) /$ $NH_4^+Cl^-(s) / NH_4^+(s) + Cl^-(s)$	(2)	
	correct states for all species	Allow (aq) or (g) for reactants Do not award (liquid) for either reactant Two products will lose both marks		

Question Number	Acceptable Answer	Additional Guidance	Mark
(iii)	An answer that makes reference to the following points:	Allow observations in any order	(2)
	• first observation (1)	Sodium carbonate/Na ₂ CO ₃ /(white) solid dissolves/disappears/forms a colourless solution	
	• second observation (1)	Effervescence/fizzing/bubbles Ignore gas/carbon dioxide given off Do not award if any named gas other than carbon dioxide, eg hydrogen or oxygen	

Question Number	Acceptable Answer	Additional Guidance	Mark
(iv)	A description that makes reference to the following points:		(5)
	remove a fixed amount of one solution using a pipette into a conical flask and fill up the burette with other solution (1)	Allow use of any suitable flask in place of conical flask.	
	add a named indicator and colour change (1)	Allow any recognised acid/base indicator: methyl red / orange, phenolphthalein etc. Ignore litmus /UI. Do not award reversed colour change	
	add solution from (1) burette to flask until indicator changes colour	Do not penalise reverse colour change again here.	
	• technique mark (1)	Any one from: Rinsing burette/pipette with appropriate solution, use of white tile, adding slowly, swirling flask etc.	
	 repeat titrations (until concordant results obtained) (1) 	Ignore mention of 'rough' or 'trial' runs etc	

Q11.

Question Number	Acceptable Answer		Additional Guidance	Mark
	An answer that makes reference t following points:	o the	Mark independently Allow names in either order Ignore symbols as well as	(2)
	ammonium	(1)	Do not award ammonia	
	• bromide	(1)	Do not award bromine Allow (1) for just NH4Br	

Q12.

Question Number	Acceptable Answers	Additional Guidance M		
	correct equation	Example of equation $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$	(1)	
		Allow multiples		
		Allow Na ⁺ on both sides if crossed through		
		Ignore state symbols even if incorrect		

Q13.

Question Number			Acce	eptal	ole Ar	ารพ	er	Additional Guidance	Mark		
(i)	Cl ₂	+	2Br	\rightarrow	2Cl ⁻	+	Br ₂	Allow multiples Ignore state symbols even if incorrect	(1)		

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)	An answer that makes reference to the following points: chlorine/bromine toxic/poisonous (1) (Carry out the experiment in a) fume cupboard (1) OR bromine corrosive (1) wear gloves (1)	2nd mark dependent on first. Do not award harmful, but allow MP2 if correct for toxic.	(2)

Q14.

Question Number	Answer	Additional Guidance	Mark
(i)	• ionic equation (1)	Example of equation $Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$ Allow multiples	(2)
	• state symbols (1)	M2 dependent on M1 or near miss	

Question Number	Answer	Additional Guidance	Mark	
(ii)	An answer that includes	Incorrect halide scores (0)	(2)	
	halide ion with some justification attempt (1)	Bromide (ion)/Br ⁻ Do not award 'bromine (ion)'		
	calculation of expected mass of silver halides (1)	0.01 mol of AgC1 = 1.43 (g) AgBr = 1.88 (g) AgI = 2.35 (g)		
	nances (1)	OR Mass of 1.0 mol is 188 g so subtraction of 107.9 for Ag means X = 80.1 so closest is Br		
		TE on incorrect formula silver halide in d(i)		

Q15.

Question Number		Answer		Additional Guidance	Mark
(i)	•	(The cation in X is) Fe^{2+} / iron(II) / $Fe(II)$ (The anion in X is) SO_4^{2-} / sulfate(VI)	(1) (1)	Allow Fe ⁺² Allow sulfate / SO ₄ ⁻² Do not award sulfite / sulfate(IV)	(2)

Question Number		Answer		Additional Guidance	Mark
(ii)	~			Examples of equation	(2)
	•	species and balancing	(1)	$Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$	
	•	state symbols	(1)	or $[Fe(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(s) + 6H_2O(1)$	
				or $[Fe(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(H_2O)_4(s) + 2H_2O(1)$	
				Ignore missing square brackets	
				TE on cation that forms an insoluble hydroxide in Test 1	
				State symbols conditional on correct species or 'near miss' / non-ionic equation	

Question Number	Answer	Additional Guidance	Mark
(iii)	An answer that makes reference to the following point: • Fe ²⁺ is oxidised (to Fe ³⁺) by oxygen / air	Allow iron(III) hydroxide / iron(III) (ions) are formed by reaction with oxygen / air TE on cation in Test 1 Allow just 'the precipitate / it is oxidised by oxygen / air'	(1)

Question Number	Answer	Additional Guidance	Mark
(iv)	An answer that makes reference to the following point: • to react with / remove any carbonate / sulfite / sulfate(IV) ions or to eliminate the possibility of carbonate / sulfite / sulfate(IV) ions	Allow to prevent any other ions forming a precipitate with barium ions / Ba ²⁺	(1)

Q16.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	Cl ₂ + 2e ⁽⁻⁾ → 2Cl ⁻	Allow multiples Ignore state symbols even if incorrect	(1)

Question Number	Acceptable Answer				r	Additional Guidance	Mark	
(ii)	Cl ₂ + 2e ⁽⁻⁾	40H ⁻ →	2CIO-	+	2H₂O	+	Allow multiples Cl ₂ + 2OH → 2ClO + 2H + 2e ⁽⁻⁾ Ignore state symbols even if incorrect	(1)

Question Number		Acceptable Answer		Additional Guidance	Mark				
(iii)	Cl ₂	+	20H⁻ →	Cl-	+	CIO-	+ H ₂ O	Allow multiples Ignore state symbols even if incorrect Do not award mark if electrons are un- cancelled	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
(iv)	An explanation that makes reference to the following points:		(2)
	(disproportionation is simultaneous) oxidation and reduction of an element (in the same species) (1)	Allow statement that chlorine is oxidised and reduced	
	• chlorine changes from 0 to -1 and +1 (1)	This can be shown on the equation in (iii)	

Q17.

Question Number	Acceptable Answers	Additional Guidance	Mark
(i)	An answer that makes reference to the following points: setting up of the dipole	M1 & M3 could be scored for an appropriate diagram	(3)
	uneven distribution of electrons/ (random) movement of electrons / (random) fluctuations of electrons (1) type of dipole	Allow "Change in electron density"	
	(results in an) instantaneous dipole / temporary dipole (in the first molecule) (1) induction of a second dipole	Allow "transient dipole" / "oscillating dipole" Do not award for "permanent dipole"	
	causes/induces a (second) dipole on another molecule	Allow neighbouring molecule / adjacent molecule Do not award for "permanent dipole"	

Question Number	Acceptable Answers	Additional Guidance	Mark
(ii)	An explanation that makes reference to the following points:	Allow reverse arguments Allow correct formulae	(2)
	relative number of electrons		
	bromine has more electrons (than chlorine) / bromine has one more shell of electrons (than)	Bromine has 35/70 electrons and chlorine has 17/34 electrons	
	chlorine) (1)	Ignore comments about protons, molecular mass etc	
		Do not award "more outer shells"	
	relative strength of intermolecular forces		
	(so) bromine has stronger (London) forces (between molecules) / more (heat) energy is needed to overcome the London forces between bromine molecules / greater temporary dipole – induced dipole forces	Ignore comments about 'points of contact' Allow more (London) forces Allow "bonds between molecules"	
	(1)	Award (0) marks overall if any implication that covalent bonds are broken (on boiling)	

Q18.

Question Number	Acceptable Answers		Additional Guidance	Mark
(i)			If name and formula are given, both must be correct Mark independently	(6)
	Test 1			
	• (gas is) ammonia / NH₃	(1)	Do not award gas is ammonium / NH ₄	
	(cation is) ammonium / NH ₄ +	(1)	Do not award cation is ammonia / NH3 ⁺	
	Test 2 • (cation is) cobalt(II) / Co ²⁺ / [Co(H ₂ O) ₆] ²⁺ • (complex ion is) [CoCl ₄] ²⁻	(1) (1)	Oxidation number of cobalt is needed in the name but allow cobalt with Co ²⁺ Charge is needed on the ion Allow +2 and -2 for the charges on the ions Allow brackets around Cl Ignore missing square brackets in complex ions Do not award [CoCl ₆] ⁴⁻ Note If cation in Test 2 is identified as copper(II) / Cu ²⁺ , do not award M3	
	Test 3 • (precipitate is) barium sulfate BaSO ₄ □ • (anion is) sulfate((VI)) / SO ₄ ²⁻		but M4 can be awarded as TE for [CuCl ₄] ²⁻ Oxidation number of sulfate is not needed but if given must be correct e.g. do not award sulfate(IV)	

Question Number	Acceptable Answers	Additional Guidance	Mark
(ii)	correct formula	Examples of correct formula (NH ₄) ₂ Co(SO ₄) ₂ (NH ₄) ₂ SO ₄ .CoSO ₄	(1)
		Allow NH ₄ , Co and SO ₄ in any order	
		Allow multiples	
		Allow any combination of Co ²⁺ / NH ₄ ⁺ / SO ₄ ²⁻ that gives a neutral	
		complex	
		TE on the three ions identified in (a)(i)	
		Ignore missing dot in second formula	
		Ignore any amount of water of crystallisation	

Q19.

Question Number	Acceptable Answers	Additional Guidance	Mark
	An answer that makes reference to the following points: mixing of 1st pair of solutions	Ignore any reference to any additional reactions, e.g. with silver nitrate	(5)
	mix Br ₂ with KCl (1)	Award mark if correct ionic equation is given	
	mixing of 2 nd pair of solutions		
	mix Br ₂ with KI or mix I ₂ with KBr (1)		
	colours of halogen (in cyclohexane)	Ignore colours before the addition of cyclohexane	
	colour seen for experiment 1/ bromine is orange / yellow and	Do not award brown	
	colour seen for experiment 2/ iodine is purple / pink / violet / lilac	Do not award red	
	(1)		
	correct ionic equation	Allow multiples	
	• Br ₂ + 2I ⁻ → 2Br ⁻ + I ₂ (1)	Ignore state symbols even if incorrect	
Es.	use of ONLY two correct experiments as above (1)		

Q20.

Question Number	Answer	Additional Guidance	Mark
(i)	• chlorine is oxidised and from 0 to +1 (in NaClO) (1)	Check the equation	(2)
	• chlorine is reduced and from 0 to - 1 (in NaCl) (1)	Allow (1) for three correct oxidation numbers if no other mark is awarded.	
		Allow (1) max for general definition of disproportionation	

Question Number	Answer	Additional Guidance	Mark
(ii)	• equation	$\begin{array}{c} 6 \text{ NaOH} + 3 \text{ Cl}_2 \longrightarrow \text{NaClO}_3 + 5 \\ \text{NaCl} + 3 \text{ H}_2\text{O} \end{array}$	(1)
		Allow multiples	

Question Number	Answer	Mark
(iii)	The only correct answer is C (hot alkali)	(1)
	A is not correct because high temperature is required	
	B is not correct because high temperature is required	
e.	D is not correct because high temperature and not excess chlorine is required	

Q21.

Question Number	Answer		Additional Guidance	Mark
(i)	An answer that makes reference to the following points:			(2)
	chlorine / Cl ₂ is simultaneously	(1)		
	• the oxidation number of chlorine changes from 0 to –I and (+)I / 0 to –I and (+)1 / increases by 1 and decreases by 1	(1)	Allow oxidation numbers underneath or above the equation	

Question Number	Answer		Additional Guidance	Mark
(ii)	substances correct in equation	(1)	Example of equation 3Cl ₂ + 6NaOH → NaClO ₃ + 5NaCl + 3H ₂ O	(2)
	equation is balanced	(1)	Ignore state symbols even if incorrect	

Q22.

Question Number	Acceptable Answers	Additional Guidance	Mark
(i)	 chlorine is a gas and iodine is a solid 	Ignore any colours, even if incorrect Do not award reference to ions once in (i)/(ii) Allow use of Cl and I	(1)
(ii)	astatine is a solid and (as the number of electrons increases) the strength of the London forces increases / more London forces	Allow for `London forces' instantaneous dipole – induced dipole / van der Waals' forces / dispersion forces / induced dipole forces / temporary dipole Ignore ID-ID References to stability The trend is increasing melting (and boiling) temperature down the group	(1)

Q23.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	An answer that makes reference to the following points.	Mark independently Ignore addition of extra water	(3)
	• cool (the reaction mixture) (1)	Allow give time for potassium iodate to crystallise Ignore the method used to cool the solution, (ice, fridge etc.)	
	filter off (the less soluble potassium iodate)	Ignore any details of the filtration methods	
	any suitable method of drying (the resulting solid) (1)	Examples of methods used to dry: 'leave to dry', warm oven, press between filter papers	

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)	An explanation that makes reference to the following points:	Mark independently	(2)
	add silver nitrate (solution) / AgNO ₃ (and HNO ₃ / nitric acid) (1)	Do not award hydrochloric acid	
	• yellow and	Allow a correct description of the yellow ppt, e.g. primrose coloured	
	precipitate /ppt/solid/crystals (1)	Do not award 'electrolysis'	

Q24.

Question Number	Answer	Additional Guidance	Mark
071 (10 A C	An answer that makes reference to: • addition of (dilute/strong) name/formula of acid (1) • effervescence/bubbling/fizzing (1)	Allow weak acids If formula given then must be correct Allow Gas given off which turns	(2)
		limewater cloudy Do not award just 'gas/ CO ₂ given off' Do not award incorrect observations such as precipitate forming due to addition of acid M2 dependent on M1 or 'near miss'	

Q25.

Question Number	Answer	Additional Guidance	Mark
	An answer that makes reference to:		(2)
	 addition of barium chloride/nitrate (solution) (1) 	Accept formulae BaCl ₂ /Ba(NO ₃) ₂ Ignore addition of acids such as HCl or HNO ₃ but do not	
	white precipitate forms	award M1 if addition of sulfuric acid	
	(1)	Allow white solid If ppt identified then must be correct	
		M2 dependent on M1 or 'near miss'	

Q26.

Question Number	Acceptable Answers		Additional Guidance	Mark
	Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O	(1)	Accept multiples and ionic equations. Allow NaOCI	(2)
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			Ignore state symbols even if incorrect	
	(Type of reaction) disproportionation	(1)	Ignore redox Mark independently	

Q27.

Question Number	Answer	Mark
(i)	The only correct answer is C (Disproportionation)	(1)
	A is not correct because oxidation and reduction are occurring	
	B is not correct because oxidation and reduction are occurring	
	D is not correct because two reactants are involved	

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)	An answer that makes reference to the following points: • (trigonal) pyramidal (1)	For M1, this shape must be named	(4)
	(predicted bond angle) 107° (1) three groups / three pairs of bonding electrons and one lone pair OR lone pair – bond pair repulsion > bond pair – bond pair repulsion (1)	Allow answers in the range 106.5° to 107.5° (allow actual value 110°) Allow M2 on an annotated diagram Allow 'regions' for 'groups' or 'pairs'	
	(electron pairs / groups repel to positions of) minimum repulsion / maximum separation (1)	Allow statements such as "lone pair repulsion greater than bond pair repulsion"	

Q28.

Question Number	Answer	Mark
(i)	The only correct answer is C (redox)	(1)
	A is not correct because chlorine is reduced and iodide is oxidised	
	B is not correct because chlorine is reduced and iodide is oxidised	
	D is not correct because different species are oxidised and reduced	×

Question Number	Answer	Mark
(ii)	The only correct answer is A (pale yellow)	(1)
	f B is not correct because the question refers to the aqueous layer	
	${f C}$ is not correct because the question refers to the aqueous layer	
	${f D}$ is not correct because this would be the colour of Cl2 (aq) in the absence of I2 (aq)	

Q29.

Question Number	Answer	Additional Guidance	Mark
(i)	An answer that makes reference to the following point: • the oxidation number / state does not change for any element	Accept there is no transfer of electrons	(1)

Answer		Additional Guidance	Mark
An explanation that makes reference to the following points:		Mark independently	(3)
 (because) sulfur in sulfuric acid is reduced further by hydrogen iodide than hydrogen bromide (and 	(1)	Allow potassium salt / halide ion for hydrogen halide	
SO ₂ / S(IV) produced in the reaction with HBr	(1)	May be shown in an equation, but ignore incorrect state symbols and/or balancing	
 more negative oxidation states of sulfur / S / H₂S / S²⁻ are produced in the reaction with HI 		May be shown in an equation, but ignore incorrect state symbols and/or balancing	
	An explanation that makes reference to the following points: • (because) sulfur in sulfuric acid is reduced further by hydrogen iodide than hydrogen bromide (and hydrogen chloride) • SO ₂ / S(IV) produced in the reaction with HBr • more negative oxidation states of sulfur / S / H ₂ S / S ²⁻ are produced in the reaction	An explanation that makes reference to the following points: • (because) sulfur in sulfuric (1) acid is reduced further by hydrogen iodide than hydrogen bromide (and hydrogen chloride) (1) • SO ₂ / S(IV) produced in the reaction with HBr (1) • more negative oxidation states of sulfur / S / H ₂ S / S ²⁻ are produced in the reaction	An explanation that makes reference to the following points: • (because) sulfur in sulfuric acid is reduced further by hydrogen iodide than hydrogen bromide (and hydrogen chloride) • SO ₂ / S(IV) produced in the reaction with HBr • more negative oxidation states of sulfur / S / H ₂ S / S ²⁻ are produced in the reaction Mark independently Allow potassium salt / halide ion for hydrogen halide (1) May be shown in an equation, but ignore incorrect state symbols and/or balancing May be shown in an equation, but ignore incorrect state symbols

Q30.

Question Number	Answer	Additional Guidance	Mark
(i)		Example of equation	(1)
	• equation	Cl₂ + 2KBr → Br₂ + 2KCl	
		Accept ionic equation	
		$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$	
		Allow multiples	
		Ignore state symbols even if incorrect	

Question Number	Answer	Additional Guidance	Mark
(ii)	An answer that makes reference to the following points:		(3)
	(M1) the precipitate is a mixture of silver chloride and silver bromide or not all of the bromide ions were oxidised (1)	Allow Some bromide ions are still present/bromide ions were in excess/both chloride and bromide ions are present	
	(M2) silver chloride/AgCl dissolves in dilute ammonia (1)	Do not award references to CI- dissolving	
	(M3) silver bromide/AgBr does not dissolve in dilute ammonia (1)	Silver bromide only dissolves in concentrated ammonia	

Question Number	Answer	Additional Guidance	Mark
(iii)	An answer that makes reference to the following point: iodine is a weaker oxidising agent than chlorine or iodine cannot oxidise bromide ions or	Accept reverse arguments	(1)
	iodine is a stronger reducing agent	Ignore Just references to reactivity/displacement e.g. iodine is less reactive/cannot displace	

Q31.

Question Number	Answer		Mark
(i)	silver nitrate (solution) / chlorine	Allow correct formula/AgNO ₃ If both name and formula are given both must be correct Allow acidified silver nitrate (solution) Ignore addition of nitric acid Do not award sulfuric acid / hydrochloric acid Do not award conc. sulfuric acid here but allow TE in dii	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
	An answer that makes reference to the following points: • cream/off-white precipitate (1) • AgBr (1)	Do not accept just 'white' or 'yellow' Accept (very) pale yellow Ignore name Ignore unbalanced equation Award (2) marks for use of chlorine: orange / brown fumes / solution Br ₂ (gas / aq) Allow TE (2) marks for use of conc. sulfuric acid in 3di choking fumes SO ₂ (g)	(2)