Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	Add hydrochloric acid / $\mathrm{HCl}(\mathrm{aq}) /$ nitric acid / $\mathrm{HNO}_{3}(\mathrm{aq})$ ALLOW Just 'acid' only if a suitable acid is given in equation one Sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}((\mathrm{aq}))$ or HCl IGNORE 'conc' Gas / carbon dioxide / CO_{2} evolved turns lime water milky / cloudy / produces a white precipitate MP2 is a stand alone mark but there must be some indication that a gas is being tested	J ust 'acid' OR heating the carbonate	2

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)i)	ALL $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$ $\begin{aligned} & \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \\ & \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \end{aligned}$ OR $\begin{aligned} \mathrm{BaCO}_{3}(\mathrm{~s})+ & 2 \mathrm{HNO}_{3}(\mathrm{aq}) \\ & \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \end{aligned}$ OR $\mathrm{CO}_{3}^{2-}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$ ALLOW $\begin{aligned} \mathrm{BaCO}_{3}(\mathrm{~s}) & +\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\ & \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s} / \mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \end{aligned}$ OR $\begin{equation*} \mathrm{BaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{BaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \tag{1} \end{equation*}$ $\begin{equation*} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \tag{1} \end{equation*}$ All state symbols in both equations correct (1) ALLOW State symbols mark if first equation not balanced but ALL species are correct. No TE on other equations		3

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	MP1 and MP2 Dip (clean) nichrome / platinum wire ALLOW loop / rod for wire OR Silica rod in hydrochloric acid/ $\mathrm{HCl}(\mathrm{aq})$ ALLOW any mention of $\mathrm{HCl}(\mathrm{aq})$ e.g. cleaning or mixing solid and acid HCl for $\mathrm{HCl}(\mathrm{aq})$ ALLOW (for MP1 and MP2) (Wooden) splint Soaked in distilled / deionised water MP3 then dipped in solid and placed in (hot / roaring / blue-cone) (Bunsen) flame ALLOW On / over / under / above for 'in' IGNORE inoculating / flame-test (wire)	Nickel / chrome / chromium spatula Other acids just 'water'	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	$\mathrm{A}=\mathrm{Mg}^{2+}$ $\mathrm{B}=\mathrm{Ca}^{2+}$ Penalise omission of ${ }^{2+}$ only once Correct ions with correct charge but the wrong way round scores 1 mark Correct ions with incorrect / no charge scores 1		2
	IGNORE Names / compounds		

Question Number	Acceptable Answers	Reject	Mark
1(b)* ${ }^{\text {(iii) }}$	Read the whole answer before awarding marks. If no mention of electrons only MP3 may be awarded. Electrons promoted to higher energy level (by thermal energy / heat from (Bunsen) flame) (Promoted) electrons fall / drop / relax to lower energy level / orbital / shell / subshell OR Electrons return to ground state Emitting radiation / light / photons (in the visible region) IGNORE Colour	Just ‘electrons promoted/ excited' J ust ‘energy lost' Just ‘energy given out	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i v)}$	Emitted radiation is not in the visible region (of the spectrum) ALLOW Emitted radiation is in IR / UV	1	

Question Number	Acceptable Answers	Reject	Mark
1(c)	As group is descended.		3
	First mark (metal ion size) (Metal) ion radius increases / has more (electron) shells (but charge remains the same) OR Charge density of metal ion decreases ALLOW (Metal) atomic radius increases / has more (electron) shells	Just "metal"	
	Second mark (polarizing species) Polarizing (ALLOW distorting) power of cation / metal ion decreases	Just 'ion'	
	Third mark (polarized species) Polarization / distortion of (electron cloud of) carbonate ion /anion decreases	Just 'ion or bond'	
	ALLOW		
	$\mathrm{C}-\mathrm{O} / \mathrm{C}=\mathrm{O}$ for carbonate ion (so carbonate more stable to heat)		
	ALLOW reverse argument for ascent of the group.		

Total for Question = 17 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a)}$	The outer electrons are closer to the nucleus/smaller atomic radius/ less electron shells (in calcium) (1)	Ionic radius/ Molecules	2
	Less shielding (in calcium) OR Reverse argument for strontium Ignore reference to repulsion between shells	Just 'less electrons'	(1)

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	Nichrome wire / platinum wire / silica rods (1) (Dip / clean) in (concentrated) $\mathrm{HCl} / \mathrm{HCl}(\mathrm{aq}) /$ dilute HCl and place in Bunsen flame OR Allow alternative procedures such as: Make a salt solution Soak in wooden splint and place in Bunsen flame	Nickel/Ni/ Chromium/Cr/ Metal loop/wire Yellow flame/burn	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i)}$	(Pale/Light) green / apple green	Blue-green	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i i)}$	Electrons promoted to higher energy level (1)		3
	Electron(s) return to lower energy level (1) Release of (visible/ light) energy/ photon upon return	Proton	

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array}
$$ \& Acceptable Answers \& Reject \& Mark \\
\hline \mathbf{2 (c) (i)} \& Barium hydroxide / Ba(OH) 2 \\
Allow product as part of the equation: \\

\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}\end{array}\right]\)| (|
| :--- |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i i)}$	Bubbles / Fizzing / Effervescence	The metal sinks Air bubbles	1
IGNORE The Barium dissolves / forms a colourless solution Increase in temperature	Just 'a gas is produced'		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (d) (i)}$	Barium is oxidized from 0 to +2 (1)		2
Chlorine is reduced from 0 to -1 (1)			
Allow one mark if oxidized and reduced are			
the wrong way round			
Ignore reference to transfer of electron unless incorrect.			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (d) (i i)}$	$\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$		
One mark for chemical symbols	(1)		2
One mark for state symbols	(1)	$\mathrm{BaSO}_{4}(\mathrm{aq})$	
	Allow one mark maximum for: $\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})$ OR lons not cancelled		

Question Number	Acceptable Answers	Reject	Mark
2 (d) (iii)	To prevent formation of carbonate / sulfite / sulfate(IV) (precipitate) / to remove carbonate / sulfite / sulfate(IV) ions	Just 'to remove other ions'	1
Question Number	Acceptable Answers	Reject	Mark
2 (e)(i)	$\mathrm{MgCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ I gnore state symbols even if incorrect ALLOW $\mathrm{MgCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}$		1

Question Number	Acceptable Answers	Reject	Mark
2 (e)(ii)	Marking Point 1 (Factor) Use larger lumps (1) Marking Point 2 (Explanation) Decreases surface area OR Fewer collisions between the reactants Alternatively Marking Point 1 (Factor) Decreases surface area Marking Point 2 (Explanation) Fewer collisions between the reactants Marking Point 3 (Factor) Decrease concentration (of acid) Marking Point 4 (Explanation) Fewer collisions between the reactants OR Fewer particles for the same volume Explanation marking point only awarded for correct factor or a near miss.	Just 'increased size of $\mathrm{MgCO}_{3}{ }^{\prime}$ Just 'change in volume of acid'	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (f)}$	Pressure only affects gaseous reactions/ There is no significant volume change/the liquids are incompressible	1	

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	A hydrocarbon (solvent) / volasil / named hydrocarbon solvent / tetrachloromethane Formulae	Ethanol Alkenes	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	Red / brown / orange / amber / yellow Or any combination No TE on incorrect / no reagent	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	Oxidation number of $\mathrm{S} \mathrm{in} \mathrm{H}_{2} \mathrm{SO}_{4}=(+) 6$ Oxidation number of S in $\mathrm{SO}_{2}=(+) 4(1)$ Oxidation number had decreased (1) ALLOW S has gained electrons for second mark Second mark stands alone provided oxidation numbers have decreased, even if calculated wrongly	Just 'S has gained electrons' without calculating oxidation numbers	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	Black / (shiny) grey solid (1) Purple / violet / pink vapour / fumes (1) Smell of (bad) eggs (1) Yellow solid (1) ALLOW Brown liquid (1) Any two	Purple solid	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	Oxidation number of S has reduced more / to -2 (in $\mathrm{H}_{2} \mathrm{~S}$) (1) OR Oxidation number of S is lower in $\mathrm{H}_{2} \mathrm{~S}$ (than in SO_{2}) If ON of S in $\mathrm{H}_{2} \mathrm{~S}$ is calculated it must be correct		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(c)	People can choose whether to take extra fluoride ALLOW Fluoride is not released into the environment	Fluoride can be monitored	$\mathbf{1}$

