Question Number	Acceptable Answers	Reject	Mark
1(a)	$\overline{\bigcirc}$		1
	Drawing must have at least 1 circle around each chlorine atom		
	OR		
	au		
	Random dots to indicate electron density around both chlorine atoms and a concentrated area between the atoms		

Question Number	Acceptable Answers	Reject	Mark
1 (b)	(Electrostatic) attraction between oppositely charged ions		1
	IGNORE comments on the formation of ions		

Question Number	Acceptable Answers	Reject	Mark
1 (c)	arking point 1 Either		3
	Diagram of U-tube / beaker with electrodes and sodium chloride solution	Sodium electrode	
	OR		
	Diagram of microscope slide with electrodes attached and either filter paper soaked in sodium chloride solution or dampened/wet filter paper on the top of the slide with the sample added (in the control)		
	(1)		
	Marking point 2Suitable circuit(1)		
	If electrodes labelled ± or named they must be consistent with the cell For example the following would not score this marking point:		
	Colhade Of PArasle		
	Marking point 3 Ammeter/ light bulb showing conductivity OR Chlorine (gas) evolved/ Test for chlorine/hydrogen (gas) evolved/Test for hydrogen (1)	Sodium formed	
	ALLOW any other reasonable electrolysis apparatus that would work to show ionic bonding.		
	For MP3 if the electrode at which the gas is		

evolved is stated then it must have the correct sign or charge, although it is not necessary to name or give a sign for the electrode, ie chlorine at the electrode with a positive sign and hydrogen at the electrode with a negative sign.	
Use of other ionic compounds can only score MP2	

Question	Acceptable Answers	Reject	Mark
Number			
1(d)(i)	Correct dot and cross diagram with charge		1
	Example		
	XX CI X•		
	XX		
	ALLOW all dots or all crosses		
	IGNORE any sodium dot and cross diagram		

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	(Isoelectronic example) S ²⁻ /S ⁻² /P ³⁻ /P ⁻³	Si ⁴⁻ /K ⁺ /Ca ²⁺ /Ar	1

Question Number	Acceptable Answers	Reject	Mark
11(e)	arking point 1 Sodium conducts when solid (and liquid/molten) (1)	Sodium in solution/dissolved	3
	Marking point 2 Sodium chloride conducts when molten (and in solution but not as a solid) (1)		
	Marking point 3 Charge carriers in sodium are (delocalised) electrons but ions in sodium chloride		
	OR		
	Conductivity in sodium due to the movement of (delocalised) electrons but the movement of ions in sodium chloride (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	 (i) ucture Lattice /close-packed (1) (or a diagram with at least 3 rows) positive ions or cations (allow metal 	layers protons 'free' electrons	4
	ions) (1) delocalized electrons / sea of electrons (1) (ii) Bon (Electrostatic) attraction		
	between positive ions / cations (allow metal ions) and delocalized electrons / sea of electrons (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)	Any three from		3
	 Magnesium ion / Mg²⁺ (allow magnesium) has a larger charge (density) than the sodium ion (allow sodium) / Na⁺ some comparison of the ions is required (1) 	Just Mg ²⁺ and Na ⁺	
	 magnesium ions / Mg²⁺ smaller than sodium ions (1) 		
	 Magnesium / Mg²⁺ contributes two / more electrons (per atom) to the "sea" of electrons (1) 		
	 magnesium ions / Mg²⁺ have greater attraction for the delocalized "sea" of electrons (1) 	More bonds	
	Ignore reference to number of outer electrons in Mg / Na Any references to the bonding being ionic, covalent or intermolecular (max 2)		
	Reverse argument can gain full marks		

Question Number	Acceptable Answers	Reject	Mark
2 (c)	The delocalized electrons / sea of electrons (1) Flow (allow move / free to move) (1) (When a potential difference/voltage is applied) 'Carry the current' is not sufficient for	'free' electrons	2
	the mark		

Question Number	Acceptable Answers	Reject	Mark
3(a)	First mark: Diagram showing U-tube OR filter paper on a microscope slide OR electrodes in a beaker OR other feasible set-up such as bridge yellow yellow blue blue blue blue blue blue blue blue		4
	negative. NOTES If set-up in the picture above is used, in addition to the + and — signs a bridge between the two beakers must also be shown. External circuits do not have to be complete (e.g. wires can be shown attached to a slide, provided the + and — labels included).		
	If the words cathode and/or anode are included, for the first mark to be awarded the cathode must be shown as —ve and/or the anode as +ve		
	If a battery symbol shown, IGNORE any incorrect polarities, that is		
	$\begin{array}{c c} + & - \\ - & - \\ \hline & \hline & - \\ & - \\ \hline \hline & \hline$		

Second marks	Just ions are	
Second mark:	attracted to the	
Description to include the idea that the	electrodes of	
ions move/ions are mobile/ions	opposite	
migrate	charge	
MUST BE IN WORDS		
ALLOW if description focuses on the		
movement of one of the ions to the		
oppositely-charged electrode (1)		
Third marks		
Valley is h allow (soley) (r_0^{2-}		
Yellow IOII/yellow (colour)/CrO ₄		
moves towards the/+ve (electrode)/		
anode (1)		
Fourth mark:		
Blue ion/blue (colour)/Cu ²⁺ moves		
towards cathode /-ve (electrode) (1)		
Mark CO on candidate's cathode and		
anode signs for the 3rd and 4th marks		

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	(Forces of attraction between) oppositely-charged ions/positive and negative ions/cations and anions IGNORE comments about electron transfer	Just ionic bonds/ Just "electrostatic forces of attraction"	1

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	First mark: Ions of the same charge (repel)/ positive ions (repel)/negative ions (repel) (1)	" Magnetic repulsion" negates first mark	2
	Second mark: Nuclei (of the ions repel) ALLOW 'protons' (in the ions repel) OR Electron clouds OR electrons (in the ions repel) (1)	"Electrons repel nuclei"	

Question Number	Acceptable Answers		Reject	Mark
3(c)(i)	Mg ²⁺ (g) O ²⁻ (g) Penalise missing /incorrect state symbols once only	(1) (1)		2
	Max 1 if include "2e ⁻ "			

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	(A is enthalpy change of) formation (of MgO) (1) ALLOW just " ΔH_f " ALLOW (enthalpy change of) combustion of magnesium	"(enthalpy change of) reaction"	2
	(C is) (sum of) first plus second ionization energies (of Mg) / $IE_1 + IE_2$ (for Mg) (1)	Just "ionization energy"/ "second ionization energy" (of Mg)	
	ALLOW "first and second ionization energies (of Mg)"		
	IGNORE references to "standard"		

Question Number	Acceptable Answers	Reject	Mark
3(c)(iii)	 (F =) A - B - C - D - E NOTE: These letters may be in any order, but the signs MUST be correct ALLOW answers when the enthalpy changes are identified correctly in words or symbols in lieu of the letters 		1

Question Number	Acceptable Answers		Reject	Mark
3(d)(i)	First mark: Mg ²⁺ AND O ²⁻ higher charge / Mg ²⁺ AND O ²⁻ higher charge density (than Mg ⁺ and O ⁻) NOTE: both ions needed	(1)	Any mention of 'intermolecular forces' scores (0) overall for this question	2
	Second mark: Mg ²⁺ smaller (than Mg ⁺)	(1)		
	IGNORE comparisons of the relative sizes of O^- with O^{2-} even if INCORRECT	ative		
	IGNORE any references to polarization (of ions) and/or covalent character			

Question Number	Acceptable Answers	Reject	Mark
3(d)(ii)	(Lattice energy of Mg ²⁺ O ²⁻ is) more exothermic/more negative ALLOW greater/increased/higher/ more/larger/bigger	"energy required " OR Lower/less/	1
	IGNORE "stronger lattice"	smaller	

Question Number	Acceptable Answers	Reject	Mark
4 (a)	(1s ² 2s ²) 2p ⁶ 3s ² 3p ⁵ (ignore repetition of 1s ² 2s ²) <i>ALLOW</i> subscripts, correct use of p_x , p_y and p_z orbitals or normal font for electrons	287	1

Question	Acceptable Answers	Reject	Mark
Number		Covalont bonding (0)	2
4 (b) (i)	XX CI XX Mg ²⁺ XX CI XX CI	Covalent bonding (0)	2
	Correct number of outer electrons (ignore whether dots and / or crosses) drawn and also ratio of magnesium : chloride ions is 1:2 (1)	Incorrect numbers of electrons in inner shells if drawn for first mark	
	Correct formulae and charges of the ions shown somewhere (1)	"MG ²⁺ " and/or "CL ⁻ " for second mark	
	NOTE : Diagram for Mg ²⁺ showing the outermost shell with 8e ⁻ (dots and/or crosses) and/or Cl ⁻ shown with a 2 in front or 2 as a subscript would also score both marks		
	Mark the two points independently		

Question Number	Acceptable Answers		Reject	Mark
4 (b) (ii)	4 shared pairs of electrons around the carbon labelled C		lonic bonding (0)	2
	All outer clostrong including long pairs, are	(1)		
	correctly shown on each of the four chlorine			
		(1)		
	ALLOW versions without circles			
	IGNORE lines between the shared electrons			
	Mark two points independently			

Question	Acceptable Answers	Reject	Mark
Number			
4 (b) (iii)	(Comparison of) charges: O ²⁻ ions whereas CI ⁻ ions OR	Use of term chlorine and/or oxygen "atoms" or "molecules" (0) f answer overall	3
	Statement to the effect that oxide ion has a greater (negative) charge / greater charge density than the chloride ion (1) (so the force of) attraction between ions is		
	stronger in MgO (than MgCl ₂) / stronger ionic bonding in MgO (than MgCl ₂) (1)		
	More energy is required to separate the ions in MgO (than MgCl ₂) / more energy is required to break (ionic) bonds in MgO (than MgCl ₂) / (1)	"More bonds need to be broken"	
	Mark the above three points independently		
	NOTE ALTERNATIVE ANSWER WITH A MAXIMUM OF TWO MARKS:-		
	O^{2-} (ions) smaller (than CI^{-} ions) (1)	(0) f answer overall if mentions	
	so (force of) attraction between ions is stronger in MgO (than MgCl ₂) /stronger ionic bonding in MgO (than MgCl ₂) (1)	"intermolecular forces"	
	Ignore ANY references to polarization of ions / covalent character / degree of covalency.		
	Mark the above two points independently		

Question	Acceptable Answers	Reject	Mark
	Eirst Mark		2
4 (0)			Z
	EITHER		
	Magnesium reacts with chlorine to form only		
	magnesium chloride/		
	manualium naasta with shlaving to form only one		
	magnesium reacts with chlorine to form only one product (
	magnesium reacts with hydrochloric acid to form		
	hydrogen (as well as magnesium chloride) /		
	magnesium reacts with hydrochloric acid to form		
	more than one product /		
	magnesium reacts with hydrochloric acid to form		
	a waste product		
	OR		
	Both equations $Ma \in CL \rightarrow MaCL and$		
	Mg + 2HCl \rightarrow MgCl ₂ + H ₂		
	IGNORE state symbols, even if incorrect		
	(1)		
	Cocord Marks		
	Second Mark:		
	EITHER		
	The reaction with chlorine has an atom economy		
	which is higher /100%		
	ALLOW "high"		
	OR		
	Any mention of numbers comparing 100 % v.		
	97.9%		
	(1)		
	IGNORE any comments about vield		
	ionene any comments about yield		
	Mark the two points independently		