
1	Som	ne chemical tests are described below.		
	Α	Warm with Fehling's (or Benedict's) solution		
	В	Warm with acidified potassium dichromate(VI) solution		
	C	Add sodium carbonate solution		
	D	Add 2,4-dinitrophenylhydrazine solution		
	(a)	Which test always gives a positive result with carbonyl compounds?	(1)	
	\times	B C	(1)	
		Which test would give a positive result with ethane-1,2-diol?	(1)	
	X			
	X			
	X			
	(c)	Which test would result in effervescence with ethanoic acid?	(1)	
	×	Α		
	X	В		
	X	c		
	X	D		
(Total for Question = 3 marks				

2 The diagram below shows part of the mechanism for the nucleophilic addition of hydrogen cyanide to butanone.

(a) The formula of the intermediate X is

(b) Consider the dissociation of the weak acid, HCN.

$$HCN(aq) \rightleftharpoons H^+(aq) + CN^-(aq)$$

Which of the following reagents would shift the position of the equilibrium towards formation of the nucleophile, CN⁻?

- 🖾 A KOH
- B KCN
- \square C H₂SO₄
- \square **D** CH₃COOH
- (c) Which statement about the mixture of organic products formed is **not** correct?
- (1)

(1)

- A The mixture contains products with chiral molecules.
- **B** The mixture rotates the plane of plane-polarized light.
- **C** The mixture contains products with the nitrile functional group.
- **D** The mixture contains products each of which has four carbon atoms in a straight chain.

3 This question is about four organic compounds, each containing two carbon atoms.

(1)

(1)

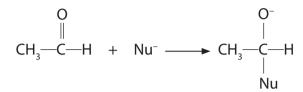
(1)

- A CH₃CH₂OH
- **B** CH₃CHO
- **C** CH₃COOH
- D CH₃COCI
- (a) Which is oxidized by ammoniacal silver nitrate?
- Δ Α
- B
- 🖾 C
- 🖾 D
- (b) Which has the highest boiling temperature?
- 🖾 A
- 🖾 B
- 🖾 C
- 🖾 D
- (c) 0.01 mol of each compound is heated separately with excess acidified sodium dichromate(VI).

Which compound reduces the largest amount of sodium dichromate(VI)?

- A
 B
 C
 D
 (d) 0.01 mol of each compound is added separately to identical volumes of water. Which solution would have the lowest pH?
 (1)
 A
 B
 - C D (Total for Question = 4 marks)

- **4** An organic compound reacts with **both** acidified potassium dichromate(VI) **and** lithium tetrahydridoaluminate (lithium aluminium hydride). The organic compound could be
 - **■ A** a primary alcohol.
 - **B** an aldehyde.
 - C a ketone.
 - **D** a carboxylic acid.


(Total for Question = 1 mark)

5 Ketones react with

- A both 2,4-dinitrophenylhydrazine solution and Tollens' reagent.
- **B** 2,4-dinitrophenylhydrazine solution but not with Tollens' reagent.
- **C** Tollens' reagent but not with 2,4-dinitrophenylhydrazine solution.
- **D** neither Tollens' reagent nor 2,4-dinitrophenylhydrazine solution.

6		tion of 2,4-dinitrophenylhydrazine (Brady's reagent) is used as a test for organic onal groups.	
	(a) Th	e positive result of the test is the formation of	(1)
	A 🛛	a yellow solution.	
	B	an orange precipitate.	
	🖾 C	a red solution.	
	D	a green precipitate.	
		nich of the following gives a positive result with a solution of I-dinitrophenylhydrazine?	(1)
	🖾 A	Only aldehydes	(=)
	B	Only ketones	
	🖾 C	Only aldehydes and ketones	
	D	Any compound containing the C—O group	
	(c) Th	e initial attack by 2,4-dinitrophenylhydrazine, when it reacts, is by	(1)
	🖾 A	a free radical.	(=)
	B	an electrophile.	
	🖾 C	a nucleophile.	
	D	a negative ion.	
		e product of a positive test, a 2,4-dinitrophenylhydrazone, contains which of e following bonds?	(1)
	🖾 A	N==N	(-)
	B	C=N	
	☑ C	C=C	
	D	C==0	

7 The first step of a nucleophilic addition reaction to a carbonyl group by a nucleophile, Nu⁻, is shown below.

The above step is possible because the

- A nucleophile bonds to the δ + carbon atom and the carbonyl oxygen accepts an electron pair from the double bond.
- **B** nucleophile bonds to the δ + carbon atom and the carbonyl oxygen accepts one electron from the double bond.
- **C** methyl group donates electrons to the carbonyl carbon atom.
- \square **D** C==O bond is weak.

(Total for Question = 1 mark)

8 In a reaction carried out between ethanoic acid and methanol, the methanol was labelled with the ¹⁸O isotope. The ¹⁸O was found to be in the organic product of the reaction

$$CH_{3} - C - OH + CH_{3} - OH \Rightarrow CH_{3} - C - OH + H_{2}O$$

From the above information it can be deduced that the mechanism involves

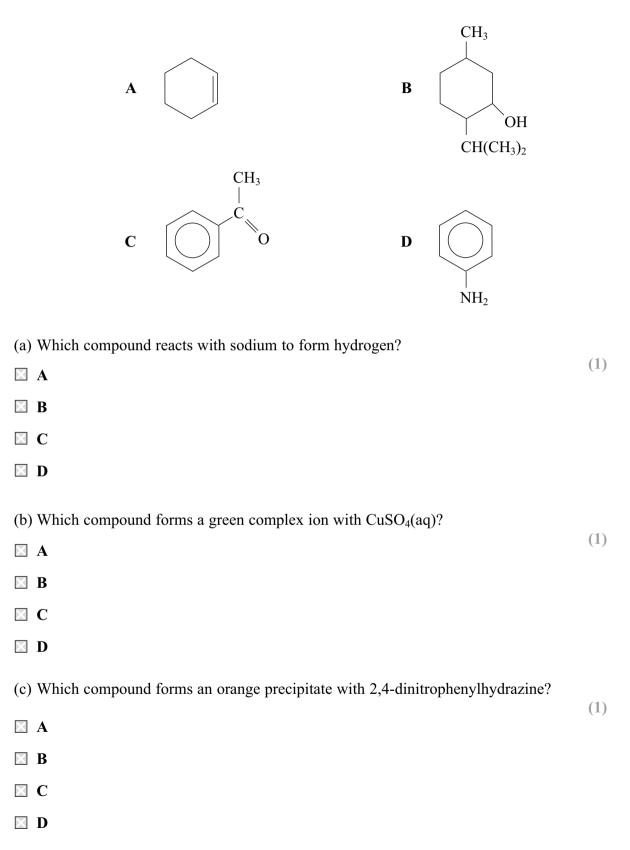
- A free radical substitution.
- **B** breaking the C—O bond in the ethanoic acid.
- **C** nucleophilic attack by ethanoic acid on methanol.
- \square **D** breaking the C—¹⁸O bond in methanol.

9	This	s question is about the four organic substances shown below.	
	A	CH ₃ CH ₂ CH ₂ CH ₂ CHO	
	B	CH ₃ CH ₂ CH ₂ CH ₂ COOH	
	С	CH ₃ COCH ₂ CH ₂ CH ₃	
	D	CH ₃ CH ₂ CH ₂ CH ₂ COCl	
	W	hich substance will	
	(a)	give a positive result with both Brady's and Tollens' reagents?	(1)
	\times	Α	
	\times	В	
	×	C	
	X	D	
	(b)	be formed by the oxidation of a secondary alcohol?	(1)
	×	Α	
	\mathbf{X}	В	
	\times	C	
	\times	D	
	(c)	form the most acidic solution when equal amounts are each mixed with 100 cm ³ of water?	(1)
	\times	Α	(1)
	×	В	
	\times	C	
	\times	D	
	(d)	form steamy fumes in the reaction with PCl ₅ ?	(1)
	\times	Α	<-/
	×	B (Total for Question 4 marks)	
	\times	C (Total for Question 4 marks)	
		D	

- 10 This question is about four compounds with molecular formula C_4H_8O .
 - A CH₃COCH₂CH₃
 - B CH₃CH₂CH₂CHO
 - C CH₃CH=CHCH₂OH
 - $\begin{array}{ccc} \mathbf{D} & \mathrm{CH}_2 & -\mathrm{CHOH} \\ & | & | \\ & \mathrm{CH}_2 & -\mathrm{CH}_2 \end{array}$
 - (a) The compounds which react when heated with a mixture of potassium dichromate(VI) and sulfuric acid are
 - \square A compounds A, B and C.
 - **B** compounds **A**, **B** and **D**.
 - \square C compounds A, C and D.
 - \square **D** compounds **B**, **C** and **D**.
 - (b) The compound which produces a yellow precipitate when heated with a mixture of iodine and sodium hydroxide is
 - A compound A.
 - \square **B** compound **B**.
 - \square **C** compound **C**.
 - \square **D** compound **D**.
 - (c) There would **not** be a significant peak at mass/charge ratio of 15 in the mass spectrum of
 - $\square A \quad \text{compound } A. \tag{1}$
 - \blacksquare **B** compound **B**.
 - \square C compound C.
 - \square **D** compound **D**.

(1)

(1)


- 11 The following tests can be carried out on organic compounds.
 - **A** Warm with 2,4-dinitrophenylhydrazine.
 - **B** Warm with Fehling's or Benedict's solution.
 - **C** Add solid sodium carbonate.
 - **D** Add phosphorus(V) chloride, PCl₅.
 - (a) Which test would give a positive result with propanoic acid but not with propan-1-ol?
 - A
 B
 C
 D
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 - D 🛛

(c) Which test would give a positive result with propanal but not with propanone?

(1)

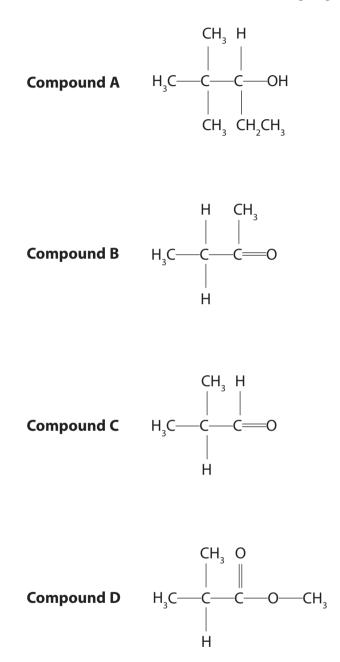
□ A
□ B
□ C
□ D

12 The formulae of some organic compounds labelled A to D are shown below.

13 Which of the following reacts with hydrogen cyanide, HCN, to make a racemic mixture?

- A Methanal, HCHO
- \square **B** Ethanal, CH₃CHO
- \square C Propanone, CH₃COCH₃
- \square **D** Pentan-3-one, C₂H₅COC₂H₅

(Total for Question = 1 mark)


14 Which of the following is a redox reaction?

- A Ethanal reacting with Tollens' reagent.
- **B** Ethanoyl chloride reacting with ammonia.
- C Ethanoic acid reacting with ethanol.
- **D** Ethanoic acid reacting with sodium hydroxide.

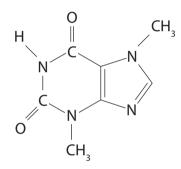
```
(Total for Question = 1 mark)
```

- **15** When propanone reacts with iodine in the presence of sodium hydroxide, the crystalline solid product has the formula
 - \square A CH₃I
 - \blacksquare **B** CHI₃
 - \square C CH₃COCH₂I
 - \square **D** CH₃COCI₃

16 Questions (a) to (d) concern the following organic compounds.

Select from ${\boldsymbol{\mathsf{A}}}$ to ${\boldsymbol{\mathsf{D}}}$ the compound that

(a) forms iodoform with iodine in the presence of alkali.	(1)
■ A	(1)
⊠ B	
⊠ C	
(b) is chiral.	(4)
Α	(1)
B	
⊠ C	
(c) reacts with Tollens' reagent.	(1)
A	(1)
B	
⊠ C	
(d) can be oxidized to form a ketone.	
Α	(1)
B	
⊠ C	
⊠ D	


17 A compound, Q, gives an orange precipitate with 2,4-dinitrophenylhydrazine.Compound Q is resistant to oxidation.On reduction, Q gives a product made up of a pair of optical isomers.

Which of the following compounds could be compound **Q**?

- A CH,CH,CH,COCH,
- \square **B** CH₃CH=CHCH(OH)CH₃
- \square **D** CH₃CH₂COCH₂CH₃

(Total for Question = 1 mark)

18 The compound shown below is found in cocoa beans and in chocolate. Which of the groups listed is **not** present in its structure?

- 🖾 A Alkyl
- B Amide
- C Amine
- D Ketone

- **19** The compounds below were heated with aqueous sodium hydroxide solution. Which one of them did **not** give sodium ethanoate, CH₃COONa, as one of the products?
 - A CH₃COOCH₃
 - \square **B** CH₃COCH₃
 - C CH₃COOH
 - D CH COCl

- **20** Hydrogen cyanide, HCN, reacts with propanal, CH₃CH₂CHO, in the presence of potassium cyanide, KCN.
 - (a) The mechanism for this reaction is
 - A nucleophilic addition.
 - **B** nucleophilic substitution.
 - \square C electrophilic addition.
 - **D** electrophilic substitution.
 - (b) The first stage of the mechanism of this reaction is

(1)

(1)

(1)

- \square A the lone pair of electrons on carbon in CN attacking C^{$\delta+$} of propanal.
- \blacksquare **B** the lone pair of electrons on nitrogen in CN attacking C^{$\delta+$} of propanal.
- \square C the lone pair of electrons on oxygen in propanal attacking C^{$\delta+$} of HCN.
- \square **D** the lone pair of electrons on oxygen in propanal attacking H^{$\delta+$} in HCN.
- (c) The product of the reaction is
- **▲** 1-hydroxypropanenitrile.
- **B** 2-hydroxypropanenitrile.
- C 1-hydroxybutanenitrile.
- **D** 2-hydroxybutanenitrile.

- 21 Which of the following does not have hydrogen bonding in a pure sample, but forms hydrogen bonds with water when it dissolves?
 - 🖾 A Propane
 - **B** Propanal
 - C Propanol
 - **D** Propanoic acid