Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (\text { (a) }}$	Quenches reaction / stops reaction / slows (1) reaction / freezes reaction		$\mathbf{2}$
	EITHER by neutralizing the acid / removing the acid / neutralizing the catalyst / removing the catalyst	By neutralizing HI Just "by diluting the reaction mixture" just "by neutralizing the reaction mixture"	
So that the acid does not react with the (1) thiosulfate			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)	Starch (solution)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 \text { (c) }}$	First mark So that [propanone] and [acid] are (virtually) constant OR so that the [propanone] and $\left[\mathrm{H}^{+}\right]$do not affect the rate OR Propanone and acid are in excess so changes in concentration don't affect rate Second mark And therefore rate changes would only depend on $[$[iodine]	Propanone and acid are in excess, without reference to further comments	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (\text { (e) }}$	Measuring cylinder quicker / Measuring cylinder can measure a variety of volumes	Just "Measuring cylinder easier to use" Easier to clean	$\mathbf{2}$
	ALLOW Measuring cylinder can be plastic so unbreakable Comment on lower cost of measuring cylinder if qualified with a reason Pipette more accurate / (graduated) pipette more precise / pipette can be used to extract samples from a reaction mixture (for titration) (1)	Measuring cylinder can be used for large volumes	Pipette more reliable lgnore references to easier

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (f) (i)	To keep (total) volume constant / to make the (total) volume $32 \mathrm{~cm}^{3} /$ to make concentrations proportional to volume of reactant	To keep concentrations constant	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
1 (f) (ii)	First order wrt propanone with explanation First order wrt hydrogen ions/ sulfuric acid, with explanation Explanation can be in terms of experiments 1 and 3 (propanone) or 1 and 2 (acid) and can be in terms of concentration or volume $\begin{align*} & \text { Rate }=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]\left(\left[\mathrm{II}_{2}{ }^{0}\right) /\right. \\ & \text { Rate }=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]\left(\left[\mathrm{II}_{2}\right]^{0}\right) \tag{1} \end{align*}$ ALLOW names of propanone and sulfuric acid in place of formulae Ignore case of k in rate equation Ignore order wrt iodine even if wrong Third mark is consequential if incorrect orders of propanone and acid given.	Expressions without rate or k Expressions with K_{c} R / r for rate	3

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 2(a) \\ & \text { QWC } \end{aligned}$	Each mark is a stand alone mark. First mark: hydrogen bonds in both ethanoic acid and ethanol OR no hydrogen bonds in ethanal Second mark: hydrogen bonds are stronger than van der Waals'/ dipole-dipole/London/dispersion/ induced dipole / permanent dipole /intermolecular forces (in ethanal) OR hydrogen bonds are the strongest/strong intermolecular forces Third mark: ethanoic acid has more electrons/ethanoic acid has the most electrons OR ethanoic acid is dimeric OR ethanoic acid forms dimers OR description of ethanoic acid dimers (N.B. In the context of dimerisation, ignore statement that "ethanoic acid forms two hydrogen bonds per molecule") OR ethanoic acid is more polar because of having more oxygen atoms	any reference to hydrogen bonding in ethanal just references to ethanol and ethanoic acid forming H bonds with water references to breaking covalent bonds Just "ethanoic acid has more hydrogen bonds than ethanol"	3

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	(1) both arrows (1) (1) IGNORE any dipoles shown Check curly arrows are all double-headed in mechanism. (If all arrows are single-headed, can only score intermediate mark.) Accept: arrow to an H^{+}instead of an $\mathrm{H}-\mathrm{CN}$ for third mark. [It is not necessary to show the lone pairs.] IGNORE any equations which generate CN^{-}ions	 arrow from N in CN -	3

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	With HCN alone, insufficient CN^{-}	Just "HCN is a weak acid" OR ORN "is too weak a nucleophile"	$\mathbf{1}$
	KCN provides (sufficient) CN^{-}		
	OR		
	KCN increases the concentration of CN^{-}	ALLOW "nucleophile" instead of CN	
	IGNORE any subsequent comments about the role of the CN		

Question Number	Acceptable Answers	Reject	Mark
$2 \text { (c)(iii) }$ QWC	These are stand alone marks First mark: attack from both sides OR attack from above and below Second mark: (gives) racemic mixture / (gives) equal amounts of each isomer / (gives) equal amounts of each enantiomer	attack on a (planar) carbocation OR attack on a (planar) intermediate OR $\mathrm{S}_{\mathrm{N}} 1$ OR $\mathrm{S}_{\mathrm{N}} 2$ "planar product"	2

