
1 Four sketch graphs are shown below.

(a) Which could be a graph of the concentration of a reactant, on the vertical axis, against time for a **zero** order reaction?

(1)

- Δ Α
- 🛛 B
- 🛛 C
- D 🛛
- (b) Which could be a graph of rate of reaction, on the vertical axis, against the concentration of a reactant for a **first** order reaction?

(1)

- Δ Α
- B
- 🛛 C
- D 🛛

(c) Which could be a graph of rate of reaction, on the vertical axis, against the square of the concentration of a reactant for a **second** order reaction?

ſ	1	١
l	1	/

B	
⊠ C	
D	
(d) Which could be a graph of the concentration of a reactant, on the vertical axis, against time for a reaction which is catalysed by a product?	
	(1)

A
 B
 C
 D

(Total for Question = 4 marks)

2 A halogenoalkane, RX, reacts with hydroxide ions, OH⁻, to form an alcohol.

 $\mathrm{RX} + \mathrm{OH}^{-} \to \mathrm{ROH} + \mathrm{X}^{-}$

The rate equation for the reaction is rate k[RX]. Which of these statements is **incorrect**?

 \square A Rate \propto [RX].

- \square **B** RX is a primary halogenoalkane.
- \square C The reaction mechanism is S_N1.
- **D** A carbocation intermediate forms in the reaction.

(Total for Question 1 mark)

3 The rate equation for the reaction between hydrogen gas and nitrogen monoxide gas is

rate $k[NO]^2[H_2]$

If the concentration of both reactants is doubled, the rate will increase by a factor of

- **A** 3
- **■ B** 4
- **C** 6
- **D** 8

(Total for Question 1 mark)

4 A reaction has the rate equation rate $k[X][Y]^2[Z]$. The concentrations of each reactant are shown in the table below.

Reactant	Concentration / mol dm ⁻³	
X	0.040	
Y	0.20	
Z	0.12	

- (a) If the rate of reaction under these conditions has a value of 0.24 mol dm⁻³ s⁻¹, then the numerical value of k is
- **A** 0.00080
- **■ B** 0.533
- **C** 1.875
- **D** 1250
- (b) The units for the rate constant, *k*, are
- \square A mol⁻³ dm⁹ s⁻¹
- \blacksquare **B** mol³ dm⁹ s⁻¹
- \square C mol⁻³ dm⁻⁹ s⁻¹
- \square **D** mol³ dm⁻⁹ s⁻¹

(Total for Question 2 marks)

(1)

(1)

5 The equation below shows the hydrolysis of a bromoalkane.

$$RBr + OH^{-} \rightarrow ROH + Br^{-}$$

For a particular bromoalkane, the rate equation is

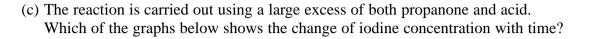
rate k[RBr] The bromoalkane, RBr, is most likely to be

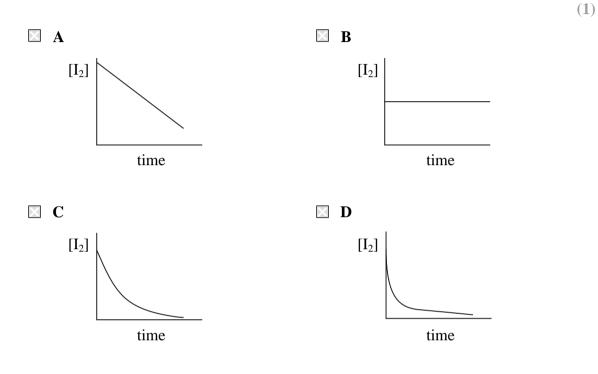
- 🖾 A CH₃Br
- \blacksquare **B** CH₃CH₂Br
- \square C (CH₃)₃CCH₂Br
- \square **D** (CH₃)₃CBr

(Total for Question 1 mark)

(1)

(1)


6 Propanone reacts with iodine in acidic solution as shown in the equation below.


 $CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + H^+(aq) + I^-(aq)$

The rate equation for the reaction is

Rate =
$$k$$
[CH₃COCH₃(aq)][H⁺(aq)]

- (a) The most appropriate technique to investigate the rate of this reaction is
- A titrating samples of reaction mixture with acid.
- **B** measurement of optical activity.
- C measurement of the volume of gas given off.
- **D** colorimetry.
- (b) Which statement about the reaction is **not** correct?
- A The overall order of reaction is second order.
- **B** The units of the rate constant are $dm^3 mol^{-1} s^{-1}$.
- C The rate constant increases with temperature.
- **D** The rate increases four times when the concentration of propanone and iodine are both doubled.

(Total for Question = 3 marks)

- 7 Methods for investigating reaction rates include
 - **A** colorimetry
 - **B** collecting and measuring the volume of a gas
 - **C** quenching, followed by titration with acid
 - **D** quenching, followed by titration with iodine solution.

Which method would be most suitable to investigate the rate of the following reactions?

- (a) $H_2O_2(aq) + 2I^{-}(aq) + 2H^{+}(aq) \rightarrow 2H_2O(I) + I_2(aq)$ (1) A B C D (b) $C_4H_9Br(I) + OH^{-}(aq) \rightarrow C_4H_9OH(I) + Br^{-}(aq)$ A B C D (Total for Question = 2 marks)
- 8 For a given initial reactant pressure, the half-life for a first order gaseous reaction was found to be 30 minutes.

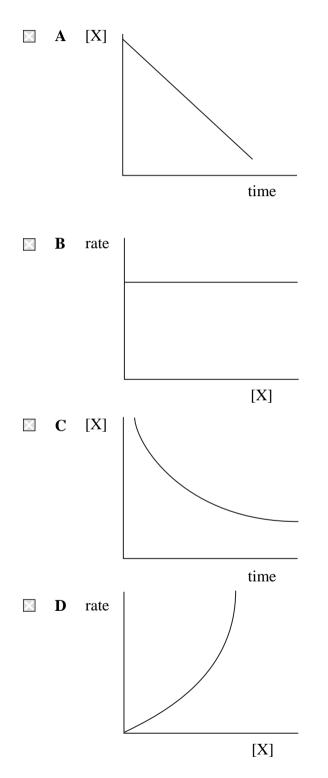
If the experiment were repeated at half the initial reactant pressure, the half-life would be

- A 15 minutes.
 B 30 minutes.
 C 45 minutes.
- **D** 60 minutes.

9 To determine the activation energy (E_a) for a reaction, the variation of reaction rate with temperature is investigated.

The rate constant, k, for the reaction is related to the absolute temperature, T, by the expression

$$\ln k = -\frac{E_a}{R} \times \left(\frac{1}{T}\right) + \text{constant}$$


where *R* is the gas constant.

The activation energy for the reaction could be obtained by plotting a graph of

	vertical axis	horizontal axis
Α	k	Т
B	k	1 T
⊠ C	ln <i>k</i>	Т
D	ln <i>k</i>	<u>1</u> Т

(Total for Question = 1 mark)

10 Which of the following graphs shows that a reaction is first order with respect to reactant X?

(Total for Question = 1 mark)

11 Which of the following changes will lead to the greatest increase in the **rate** of the following endothermic reaction?

		Temperature	Initial concentration of N_2 and O_2
\mathbf{X}	Α	decrease by 15%	decrease by 15%
\times	B	increase by 15%	stay the same
\times	С	decrease by 15%	increase by 15%
\times	D	increase by 15%	increase by 15%

 $N_2(g) + O_2(g) \rightarrow 2NO(g) \quad \Delta H + ve$

(Total for Question = 1 mark)