Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	So that the phenol is used up / methyl orange is bleached before the rate changes (significantly) OR So that the phenol is used up / methyl orange is bleached during the initial rate period OR So that the concentration of bromide/bromate/reactants does not fall significantly before all the phenol is used up / the methyl orange is bleached OR Within this region/period/time the average rate of reaction approximates to the initial rate	bromine	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	So that only the concentration of bromide ions varies (significantly) during the course of the reaction / so that the concentration of the bromide ions is the limiting factor / so that the concentration of bromide ions is the only variable ALLOW So their concentrations / the $\mathrm{BrO}_{3}-$ and H^{+}concentrations do not change OR So their concentrations / the $\mathrm{BrO}_{3}-$ and H^{+}concentrations are not the limiting factor	(1)	

	Acceptable Answers							Reject	Mark

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i i)}$	M1: First order This mark is independent of the graph drawn M2: Because the graph is a straight line (through the origin) OR rate is proportional to [Br-] / rate is proportional to volume of Br OR As concentration / volume increases by (factor of) 2, rate increases by 2 (or any other numbers, including 'x') OR Rate increases linearly (with concentration) ALLOW Gradient of line is constant	(2)	

Question Number	Acceptable Answers	Reject	Mark
1(b)(iv)	Rate $=\mathrm{k}\left[\mathrm{Br}^{-}\right]\left[\mathrm{BrO}_{3}{ }^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$ ALLOW ' $r=$ ' instead of "rate $=$ " Allow TE on their order wrt Br^{-}from (b)(iii) $\begin{equation*} \mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1} \tag{1} \end{equation*}$ Allow the units in any order Allow TE for M2 on candidate's stated rate equation (1) e. if rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]$ then TE on units for $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i)}$	They are spectator ions OR They are unchanged (on both sides of the equation) OR They do not take part in the reaction / they do not play any part in the reaction ALLOW "They cancel out"	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i)}$	Blue-black colour appears / turns blue-black	Black from blue	(1)
	ALLOW blue or black / shades of blue or black		
	IGNORE Any INITIAL colour Any reference to precipitate / solid	Purple	Bluer

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}(\mathbf{d) (i)}$	Measure the time taken (for the blue-black colour to appear) and temperature	(1)	

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)i)	Temperature converted to kelvin OR K ${ }^{-1}$ given as units on the x-axis of the graph M2 The vertical axis should be In rate / In 1/t Note ALLOW In k for this mark M3 The horizontal axis should be $1 / T$ M4 Straight line (with a negative gradient) OR Can be shown by candidate in a sketch graph of a straight line with a negative gradient M5 Any mention of gradient (of the line) M6 Rearranges expression so: $\mathrm{E}_{\mathrm{a}}=$-gradient $\times \mathrm{R}$ OR 'Multiply gradient by - R' Negative sign MUST be shown or mentioned specifically NOTE: Plot "In rate against 1/T" scores both M2 and M3 If axes clearly the wrong way round max (4) - namely only marks M1, M4, M5 and M6 are possible	$\begin{align*} & 1 / \mathbf{T} \\ & 1 / \mathbf{t} \tag{1} \end{align*}$	(6)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (b) ~}$ (i)	(As) rate is (directly) proportional to concentration / as [A] doubles so does rate / rate ∞ concentration / rate ∞ [A]		$\mathbf{1}$
ALLOW Just 'straight line through origin/(0,0)'	IGNORE References just to a 'constant gradient' References to just 'it is a straight line' References to positive correlation		

Question Number	Correct Answer	Reject	Mark
2 (b) (ii)	1st mark: Rate higher than expected / rate unusually high / higher rate (for the anomalous points on the graph)	(1)	3
	2nd mark: Reaction is exothermic / (heat) energy is released during the reaction	(1)	
3rd mark: EITHER (So) there are more particles/ collisions with energy > E	ALLOW Higher proportion of successful collisions / just more successful collisions IGNORE Just 'more collisions' / 'more frequent collisions' OR At higher concentrations of A, the effect of the reaction being exothermic is greater	(1)	

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (c) ~}$	Increases reliability / improves validity (of the data obtained) / confirms the initial results / to check for anomalous results IGNORE References to average / precision / accuracy		$\mathbf{1}$
	OR		
To determine order w.r.t. B and X / to see the effect of B and X (on the rate) / enables order of other reagents to be determined / to determine order w.r.t. B / find overall order / determine rate equation / to calculate k			

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 2(c) \\ & \text { (ii) } \tag{1} \end{align*}$	0 order w.r.t. B 1st order w.r.t. X Rate $=k[A][X]$ OR Rate $=k[A][X][B]^{0}$ ALLOW TE for CQ correct rate equation on incorrect order(s) Correct reasoning using data from table to deduce the CORRECT order w.r.t. B NOTE that there must be reference to TWO relevant concentrations changing Eg (Expt $1 \& 3$) [A] triples, so does rate AND [B] d ubles so order w.r.t. B is 0 (Expt 2 \& 3) [A] x 1.5, rate x 1.5 AND [B] d ubles so order w.r.t. B is 0 This mark can only be awarded if the reasoning shows that order w.r.t B is zero. Not enough just to say 'as [B] doubles, rate unchanged' Correct reasoning using data from table to		5

Kinetics and Equilibria

Question Number	Correct Answer	Reject	Mark
$2 \text { (c) }$ (iii)	$\begin{align*} \mathrm{k} & =\text { rate } /[\mathrm{A}][\mathrm{X}]=4.2 \times 10^{-3} \div(0.08 \times 0.25) \\ & =0.21 \tag{1} \end{align*}$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ ALLOW units in any order Comment Unit mark is independent of the value Allow use of data from experiments 1, 2 \& 3 Allow TE from an incorrect rate equation given in answer to Q14(c)(ii) or a 'new' rate equation given at the start of answer to Q14(c)(iii), if of the form rate $=k \ldots$		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{3 (a)}$	$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$		$\mathbf{1}$
	ALLOW multiples		
Ignore state symbols even if incorrect			

Question Number	Correct Answer	Reject	Mark
$\mathbf{3 ~ (b) (i) ~}$	Blue/black /blue-black	Purple	$\mathbf{1}$
	OR		
Colourless to blue-black/ blue/black			

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	The mixture would change colour/ go (b) (ii) blue/black /blue-black immediately/ straight away		$\mathbf{1}$
	ALLOW ...too quick(ly)/too early ...quicker ...no time delay		

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	(As quickly as iodide reacts to form (b) (iii) iodine it is) reduced/turned back to ALLOW		$\mathbf{1}$
Persulfate reacts with thiosulfate first.			
	OR lodine reacts with thiosulfate.		

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$ (c)(ii)	First order This mark is independent of the graph drawn	(1)	2
	Because the graph is a straight line (through the origin)/ rate is proportional to $\left[\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right.$] OR	As concentration increases by (factor of) 2 rate increases by 2 (or any other numbers, including 'x') OR Rate increases linearly (with concentration) OR increases rate increases'	Just 'as Gradient of line is constant Second mark depends on first order

Question Number	Correct Answer	Reject	Mark	
$\mathbf{3}$	Rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{l}^{-}\right]$	(1)	Incorrect formulae	$\mathbf{2}$
$\mathbf{(c) (i i i)}$	TE from (c)(ii)			
	Units $-\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			
ALLOW				
	Internal TE from rate equation Units in any order	(1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	Either		$\mathbf{1}$
$\mathbf{(d) (i i) ~}$	Take readings at different temperatures		
	OR Repeat at the same two temperatures ALLOW Just 'repeat the experiment'		

