
Question Number	Correct Answer	Reject	Mark
1 (a)	$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$		1
	ALLOW multiples		
	Ignore state symbols even if incorrect		
	COMMENT		
	2 in front of sulfate is often missed.		

Question Number	Correct Answer	Reject	Mark
1 (b)(i)	Blue/black /blue-black OR	purple	1
	Colourless to blue-black/ blue/black		

Question Number	Correct Answer	Reject	Mark
1 (b)(ii)	The mixture would change colour/ go blue/black /blue-black immediately/straight away		1
	ALLOW		
	too quick(ly)/too early		
	quicker		
	no time delay		

Question Number	Correct Answer	Reject	Mark
1 (b)(iii)	(As quickly as iodide reacts to form iodine it is) reduced/turned back to iodide by the thiosulfate ions		1
	ALLOW		
	Persulfate reacts with thiosulfate first.		
	OR		
	Iodine reacts with thiosulfate.		

Question Number	Correct Answer	Reject	Mark
1 (c) (ii)	First order This mark is independent of the graph drawn (1) Because the graph is a straight line (through the origin)/ rate is proportional to [1 ⁻] OR As concentration increases by (factor of) 2 rate increases by 2 (or any other numbers, including 'x') OR Rate increases linearly (with concentration) OR Gradient of line is constant (1) Second mark depends on first order	Just 'as concentration increases rate increases'	2

Question Number	Correct Answer		Reject	Mark
1 (c)(iii)	Rate = $k[S_2O_8^{2^-}][I^-]$ Units - dm ³ mol ⁻¹ s ⁻¹ (1)	(1)	Incorrect formulae	2
	TE from (c)(ii)			
	ALLOW			
	Units in any order			
	Internal TE from rate equation			

Question Number	Correct Answer	Reject	Mark
1 (d)(i)	Method 1		3
	First mark		
	Gradient = $-E_a/R$		
	OR		
	$E_a = -R x \text{ gradient}$ (1)		
	Second mark		
	(Gradient =) $\frac{-3.15 - (-3.84)}{(3.20 - 3.31) \times 10^{-3}}$		
	OR		
	= -6272.7 (K)		
	Please award this mark if -6272.7 is seen anywhere! (1)		
	Method 2		
	First mark Setting up two simultaneous equations (1)		
	Second mark Subtracting one equation from the other or other correct methods of solution		
	(1) Third mark (applies to both methods)		
	$(E_a) = +52126 \text{ J mol}^{-1} / +52.1(26) \text{kJ mol}^{-1}$		
	Note: TE can only be given if either method 1 or method 2 has been clearly carried out.	Negative sign	
	Positive sign given		
	OR Two negative signs clearly cancel in method and no sign given (1)		
	Correct answer with or without working, with sign and units (3)		
	Ignore SF unless only one		

Question Number	Correct Answer	Reject	Mark
1 (d)(ii)	Either Take readings at different temperatures		1
	OR Repeat at the same two temperatures		
	ALLOW		
	Just 'repeat the experiment'		

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	 (Sodium thiosulfate) (rapidly) reacts with / reduces the iodine (as it is formed) (1) So prevents the starch-iodine colour appearing until a fixed amount of reaction has occurred ALLOW (for second mark) So prevents the starch-iodine colour appearing until all the thiosulfate has reacted OR Moles of iodine reacted / thiosulfate ÷ time is (approximately) proportional to the (initial) rate of reaction ALLOW 	iodide / I [−]	2
	Use of 'thio' for thiosulfate		

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	(From 2 to 1) $[S_2O_8^{2^-}]$ doubles ([1 ⁻] unchanged) and rate doubles / time halves so order wrt $S_2O_8^{2^-} = 1$ (1) (From 3 to 1) [1 ⁻] doubles ($[S_2O_8^{2^-}]$ unchanged) and rate doubles / time halves so order wrt 1 ⁻ = 1 OR (if first mark awarded) (From 3 to 2) [1 ⁻] doubles ($[S_2O_8^{2^-}]$ halved) and rate unchanged so order wrt 1 ⁻ = 1 (1) Penalise omission of concentration/square brackets once only Rate = $k[S_2O_8^{2^-}][1^-]$ (1) Third mark stand alone if no working & TE on incorrect orders IGNORE case of k	Rate equation =	3

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	irst markColorimetry /Use a colorimeter(1)Second markMeasure transmittance / absorbance (at various times)(1)	Sampling methods calorimeter	3
	Third mark (Use a calibration curve to) convert transmittance / absorbance into concentration. OR transmittance / absorbance proportional to concentration		
	ALLOW Colorimetry may be used because iodine (solution) is coloured (and other reagents are colourless) / to measure intensity of the iodine colour (1)	pH meter	
	ALLOW (for the same three marks) Electrical conductivity		
	Measured at various times / (use a calibration curve to) convert conductivity into concentration.		
	Conductivity reduces as reaction proceeds because 3 mol ions converted to 2 mol ions / fewer ions on right hand side	Just conductivity changes	
Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	[(NH ₄) ₂ S ₂ O ₈] / [S ₂ O ₈ ²⁻] / [peroxodisulfate] / [persulfate] remains (approximately) unchanged during the reaction. OR	(NH ₄) ₂ S ₂ O ₈ in excess. [(NH ₄) ₂ S ₂ O ₈] etc does not affect the rate	1
	[KI] / [I ^{$-$}] is the only variable	Only [KI] / [I ⁻] affects the rate	
Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	Plot a graph of concentration (of iodine/I2) (on the y axis) against time(1)Measure the initial gradient / gradient at t=0(1)		2
	'Plot a graph and measure the initial gradient / gradient at t=0' alone scores second mark		

Question Number	Acceptable Answers		Reject	Mark
2(b)(iv)	TE on 20(a) (ii) on numerical answer and appropriate units 8.75 x $10^{-5} = k x 2.0 x 0.025$ $k = 8.75 x 10^{-5} / (2.0 x 0.025)$ $= 1.75 x 10^{-3}$ $dm^3 mol^{-1} s^{-1}$ ALLOW units in any order Correct answer including units with no working scores 2	(1) (1)	1 SF	2

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	Activation Energy Persulfate-lodide -3.00 0.0029 0.003 0.0031 0.0032 0.0033 0.0034 -4.00 -4.50 -5.50 y = -4509x + 9.7525		2
	1/π Use the overlay to mark the graph		
	At least 4 points within the circles on the overlay (1)		
	Best fit line on points given (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	Gradient = $-(-3.505.27) / (0.00333 - 0.00294)$ = $(-)4538 = (-)4500$ ALLOW		4
	values from (-)4300 to (-)4700 (1)		
	gradient value negative (1)		
	$E_a = -\text{gradient x } R =4538 \times 8.31$ = (+)37700 J mol ⁻¹ (= (+)38 kJ mol ⁻¹) (1)		
	TE on value of gradient even if it is positive		
	-4300 gives 35.7; -4700 gives 39.1		
	Correct units (1)		
	Correct answer from the gradient calculation with units scores final 2 marks		
	BUT correct answer with units but no gradient calculation scores units mark only		

Question Number	Correct Answer	Reject	Mark
3 (a)(i)	Sodium thiosulfate/Na ₂ S ₂ O ₃ ALLOW S ₂ O ₃ ²⁻ or thiosulfate ions	Just	1
		thiosulfate	

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	Add (excess) sodium hydrogencarbonate/ NaHCO ₃ (1)	NaOH/ sodium hydroxide/ alkali	2
	To neutralize/remove/react with acid (catalyst) (1) Cool in ice (water) with no reference to neutralization – allow 1 mark but ignore if either of first two marks awarded	just cold water	

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	Suitable graph and scale(1)		3
	Points plotted and line of best fit (1)		
	0 order (with respect to iodine) (1)		
	9·9		
	9.7		
	4.2		
	x 10 ⁻⁴ 9 3 [1 ₃ (aq)] / mol dm ⁻¹		
	a.1		
	8.9		
	8.7		
	8.5 0 5 10 15 20 25 30		
	Time / minutes		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	Graph is a straight line/Gradient is constant (1) Rate stays constant (as iodine used up)/ Concentration has no effect on rate (1) Stand alone marks	Half life is constant	2

Question Number	Acceptable Answers	Reject	Mark
3(c)	Colorimetry/use of pH meter/conductivity/titrate with AgNO ₃ /titrate with alkali (to monitor change in [H ⁺])	C a lorimetry Use of starch/ Iodine clock reaction	1

Question Number	Acceptable Answers	Reject	Mark
4 (a)(i)	 O₂: first order as increasing [O₂] x 2 increases rate x 2 / as rate is (directly) proportional to oxygen concentration (1) (Experiments 1 and 2 or [NO] constant) NO: second order as increasing [NO] x 2 increases rate x 4/ by 2² (1) (Experiments 2 and 3 or [O₂] constant) Two correct orders with no explanation (1) only 	Two correct orders based on stoichiometry	2

Question Number	Acceptable Answers	Reject	Mark
4 (a)(ii)	Rate = $k [O_2][NO]^2$ Rate equation must be consistent with answer in (a)(i)	Just k [O ₂][NO] ² i.e. no rate/R	1
		Non square brackets	

Question Number	Acceptable Answers	Reject	Mark
4 (a)(iii)	Rate = $k[O_2][NO]^2$ TE from (i) k=((5.10 x 10 ⁻⁴)/(0.005)(0.0125) ²) = 652.8 / 653/650 OR k=((10.2 x 10 ⁻⁴)/(0.0100)(0.0125) ²) = 652.8 / 653/650 OR k=((40.8 x 10 ⁻⁴)/(0.0100)(0.025) ²) = 652.8 / 653/650 (1) TE for value of k from rate equation given		2
	dm ⁶ mol ⁻² s ⁻¹ (allow any order) (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$NO_2 + CO \rightarrow NO + CO_2$ Allow multiples	Equation not cancelled down eg NO₃ on both sides.	1

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	Rate = $k[NO_2]^2$ OR Rate = $k[NO_2]^2[CO]^0$ OR Rate = $k[NO_2]^2[CO]^0[NO_3]^0$ (1)	Equations involving CO to power other than zero	2
	Only molecules/reactant in slow step are (2)NO ₂		
	OR		
	CO appears after the rate determining/slow step (and 2NO ₂ molecules in slow step)		
	OR		
	CO is not involved in rate determining / slow step		
	OR		
	Only the molecules in the slow step are in the rate equation		
	OR		
	Step 1 is slowest so determines rate equation (1)		
	Second mark: No TE on rate equation containing incorrect species. Only allow TE if k missing in correct rate equation		