
- 1 What is the equation for the first electron affinity of sulfur?
  - $\triangle$  **A**  $S(s) + e^- \rightarrow S^-(q)$
  - $\square$  **B**  $S(g) + e^- \rightarrow S^-(g)$
  - $\boxtimes$  **C**  $S(s) \rightarrow S^{+}(g) + e^{-}$
  - $\square$  **D**  $S(g) \rightarrow S^+(g) + e^-$

(Total for Question = 1 mark)

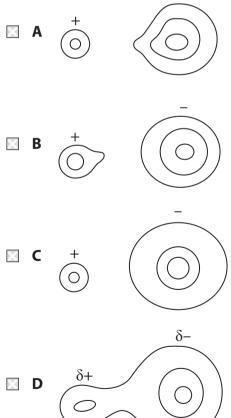
2 The diagram shows a Born-Haber cycle for calcium chloride. It is not drawn to scale. All units are in kJ mol<sup>-1</sup>.



(a) Which enthalpy change is correctly labelled on the diagram?

(1)

- oxdot **A** Enthalpy change for the formation of calcium chloride (**P**).
- **B** First ionization energy of calcium (**Q**).
- ☑ C Electron affinity of chlorine (R).
- **D** Twice the enthalpy change of atomization of chlorine (**S**).


- (b) What is the value of  $\mathbf{X}$ , in kJ mol<sup>-1</sup>?
- **B** -795

(Total for Question = 2 marks)

(1)

| 3                                                                                                                     | 3 Which of the following data is <b>not</b> needed to calculate the lattice energy of sodium chloride when using a Born-Haber cycle? |   |                                                  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------|--|--|--|--|
|                                                                                                                       | X                                                                                                                                    | A | Enthalpy change of formation of sodium chloride. |  |  |  |  |
|                                                                                                                       | X                                                                                                                                    | В | Enthalpy change of atomization of sodium.        |  |  |  |  |
|                                                                                                                       | ×                                                                                                                                    | C | First ionization energy of chlorine.             |  |  |  |  |
|                                                                                                                       | ×                                                                                                                                    | D | Electron affinity of chlorine.                   |  |  |  |  |
|                                                                                                                       |                                                                                                                                      |   | (Total for Question = 1 mark)                    |  |  |  |  |
|                                                                                                                       |                                                                                                                                      |   |                                                  |  |  |  |  |
|                                                                                                                       |                                                                                                                                      |   |                                                  |  |  |  |  |
| <b>4</b> The lattice energy of magnesium oxide is more negative than the lattice energy of magnesium fluoride because |                                                                                                                                      |   |                                                  |  |  |  |  |
|                                                                                                                       | X                                                                                                                                    | A | oxide ions are larger than fluoride ions.        |  |  |  |  |
| ■ B oxide ions are larger than magnesium ions.                                                                        |                                                                                                                                      |   |                                                  |  |  |  |  |
| C oxide ions are more highly charged than fluoride ions.                                                              |                                                                                                                                      |   |                                                  |  |  |  |  |
|                                                                                                                       | D there is only one oxide ion but two fluoride ions per magnesium ion.                                                               |   |                                                  |  |  |  |  |
|                                                                                                                       |                                                                                                                                      |   | (Total for Question = 1 mark)                    |  |  |  |  |
|                                                                                                                       |                                                                                                                                      |   |                                                  |  |  |  |  |

| 5 | Which of the following quantities, used in the calculation of the lattice energy of                 |   |                                                |  |  |  |
|---|-----------------------------------------------------------------------------------------------------|---|------------------------------------------------|--|--|--|
|   | lithium oxide, Li <sub>2</sub> O, has a negative value?                                             |   |                                                |  |  |  |
|   | ×                                                                                                   | A | The enthalpy change of atomization of lithium. |  |  |  |
|   | ×                                                                                                   | В | The first ionization energy of lithium.        |  |  |  |
|   | ×                                                                                                   | C | The first electron affinity of oxygen.         |  |  |  |
|   | ×                                                                                                   | D | The second electron affinity of oxygen.        |  |  |  |
|   |                                                                                                     |   | (Total for Question = 1 mark)                  |  |  |  |
|   |                                                                                                     |   |                                                |  |  |  |
| 6 | Which of the diagrams below best represents the shapes of the electron contours in sodium fluoride? |   |                                                |  |  |  |
| • |                                                                                                     |   |                                                |  |  |  |
|   |                                                                                                     |   | _                                              |  |  |  |



- 7 Which of the equations below represents the first electron affinity for oxygen?
  - $\square$  **A**  $O_2(g) + 2e^- \rightarrow 2O^-(g)$
  - $\blacksquare$  **B**  $O_3(g) 2e^- \rightarrow 2O^-(g)$
  - $\square$  **C**  $\frac{1}{2}O_3(g) + e^- \rightarrow O^-(g)$
  - $\square$  **D** O(g) + e<sup>-</sup>  $\rightarrow$  O<sup>-</sup>(g)

(Total for Question = 1 mark)

- **8** Which of the following oxides would be expected to have the most exothermic lattice energy?
  - A Na<sub>2</sub>O
  - B MgO
  - C CaO

(Total for Question = 1 mark)

- **9** In the Born-Haber cycle for potassium iodide, which of the following steps is **exothermic**?
  - $\square$  **A**  $K(s) \rightarrow K(g)$
  - $\boxtimes$  **B**  $K(g) \rightarrow K^+(g) + e^-$
  - $\square$  **C**  $\frac{1}{2}I_{2}(s) \rightarrow I(g)$
  - $\square$  **D**  $I(g) + e^- \rightarrow I^-(g)$

(Total for Question = 1 mark)

- 10 Magnesium chloride, MgCl<sub>2</sub>, has two lattice energy values quoted in the data booklet. The first is the experimental value, obtained from the Born-Haber cycle, 2526 kJ mol <sup>1</sup>; the second is the theoretical value, 2326 kJ mol <sup>1</sup>. Why are the two values different?
  - A The cation polarizes the anion leading to some covalent bonding.
  - B The anion polarizes the cation leading to some covalent bonding.
  - ☑ C Magnesium chloride is a covalent substance.
  - **D** The results from the Born-Haber cycle are too inaccurate to be reliable.

(Total for Question 1 mark)

- 11 Which of the following represents the process occurring when the enthalpy change of atomization of bromine is measured?
  - $\square$  **A**  $\frac{1}{2}Br_2(1) \rightarrow Br(g)$
  - $\boxtimes$  **B**  $\frac{1}{2}Br_2(g) \rightarrow Br(g)$
  - $\square$  C Br<sub>2</sub>(1)  $\rightarrow$  Br<sup>+</sup>(g) + Br (g)
  - $\square$  **D**  $Br_2(g) \rightarrow Br^+(g) + Br(g)$

(Total for Question 1 mark)

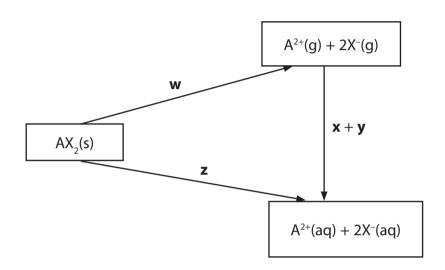
12 The standard enthalpy changes of formation of some sulfur species are:

| Species  | $\Delta H_{ m f}^{\ominus}$ / kJ mol $^1$ |
|----------|-------------------------------------------|
| $S_8(s)$ | 0                                         |
| $S_8(g)$ | +103                                      |
| S(g)     | +279                                      |

The enthalpy of atomization of sulfur is (in kJ mol 1)

- **B** 279
- $\triangle$  **D**  $(103 \div 8) + 279$

(Total for Question 1 mark)


- 13 Which of these equations represents the electron affinity of chlorine?
  - $\square$  A  $Cl_2(g) + 2e^- \rightarrow 2Cl^-(g)$
  - $\blacksquare$  **B**  $Cl_2(g) 2e^- \rightarrow 2Cl^-(g)$
  - $\square$  C  $\frac{1}{2}Cl_2(g) + e^- \rightarrow Cl^-(g)$
  - $\square$  **D**  $Cl(g) + e^- \rightarrow Cl^-(g)$

(Total for Question = 1 mark)

- 14 Which of these ions has the greatest ability to polarize an anion?
  - $\square$  A Ba<sup>2+</sup>
  - **■ B** Ca<sup>2+</sup>
  - $\square$  C Cs<sup>+</sup>
  - $\square$  **D**  $K^+$

(Total for Question = 1 mark)

15 The following cycle represents the enthalpy changes  $\mathbf{w}$ ,  $\mathbf{x}$ ,  $\mathbf{y}$  and  $\mathbf{z}$ , occurring when an ionic solute,  $AX_2(s)$ , dissolves in water.



Which of the changes is the lattice energy of  $AX_2(s)$ ?

- A ½ w
- B − w
- ⊠ C z
- $\square$  D z x y

(Total for Question = 1 mark)

- 16 The enthalpy change of atomization of iodine is the value of  $\Delta H$  for the process
  - $\boxtimes \mathbf{A} \quad I_2(s) \to I_2(g)$
  - $\boxtimes$  **B**  $I_2(s) \rightarrow 2I(g)$
  - $\square$  **C**  $I_2(g) \rightarrow 2I(g)$
  - $\square$  **D**  $\frac{1}{2}I_2(s) \rightarrow I(g)$

(Total for Question 1 mark)

17 The ionic radii in nm of some ions are given below.

| $Li^+$    | 0.074 | F     | 0.133 |
|-----------|-------|-------|-------|
| $Ca^{2+}$ | 0.100 | Cl    | 0.180 |
|           |       | $O^2$ | 0.140 |
|           |       | $S^2$ | 0.185 |

(a) Which of the following compounds has the most exothermic lattice energy? They all have the same crystal structure.

(1)

- 🛛 A LiF
- **■ B** LiCl
- C CaO
- **D** CaS
- (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model?

(1)

- 🛮 A LiF
- **■ B** Li<sub>2</sub>O
- C CaO
- **D** CaS

(Total for Question 2 marks)

- 18 The equation for the enthalpy of hydration for a magnesium ion is
  - $\square$  A  $Mg^{2+}(s) + aq \rightarrow Mg^{2+}(aq)$
  - $\square$  **B**  $Mg^{2+}(g) + aq \rightarrow Mg^{2+}(aq)$
  - $\square$  C  $Mg^{2+}(aq) \rightarrow Mg^{2+}(g) + aq$
  - $\square$  **D**  $Mg^{2+}(aq) \rightarrow Mg^{2+}(s) + aq$

(Total for Question 1 mark)

- 19 Which reaction has an enthalpy change equal to the enthalpy of hydration of the sodium ion?
  - $\square$  A Na<sup>+</sup>(g) + excess H<sub>2</sub>O(l)  $\rightarrow$  Na<sup>+</sup>(aq)
  - $\square$  **B** Na<sup>+</sup>(g) + 1 mol of H<sub>2</sub>O(l)  $\rightarrow$  Na<sup>+</sup>(aq)
  - $\square$  C Na<sup>+</sup>(s) + excess H<sub>2</sub>O(l)  $\rightarrow$  Na<sup>+</sup>(aq)
  - $\square$  **D** Na<sup>+</sup>(s) + 1 mol of H<sub>2</sub>O(l)  $\rightarrow$  Na<sup>+</sup>(aq)

(Total for Question 1 mark)