

Question Number	Correct Answer	Reject	Mark
$\begin{array}{\|l} \hline 1 \tag{1}\\ \text { (a)(ii) } \end{array}$	$\begin{align*} & -994.3-[+109.9+(2 \times-110.5)+(2 \times \\ & -285.8)] \\ & =-311.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Allow TE from (a) NOTE If both -110.5 and -285.8 are not doubled, answer $\mathrm{CQ}=-707.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ for $\mathbf{1}$ mark Ignore SF except 1 SF		2

Question Number	Correct Answer	Rejec t	Mark
$\begin{align*} & 1 \tag{1}\\ & (\mathrm{a})(\mathrm{iii}) \end{align*}$	$250(.0)-[278.7+(2 \times 197.6)+(2 \times 69.9)]$ $\begin{equation*} =-563.7\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ Allow TE from (a) NOTE If both 197.6 and 69.9 are not doubled, answer $\mathrm{CQ}=-296.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ for $\mathbf{1}$ mark Ignore SF except 1 SF		2

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & \hline 1 \tag{1}\\ & \text { (a)(iv) } \end{align*}$	$\begin{aligned} & \Delta \mathrm{S}_{\text {surr }} \text { at } 298 \mathrm{~K}=-\Delta \mathrm{H} / \mathrm{T} \\ & =-(-311.6 \times 1000) / 298 \\ & =(+) \mathbf{1 0 4 5 . 6}\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{aligned}$ Allow TE from (a)(ii) e.g. $\Delta \mathrm{S}_{\text {surr }}=(+) 2375.5(0)\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$ scores (2) if no doubling in (a)(ii) $\begin{align*} & \Delta \mathrm{S}_{\text {tot }}=\Delta \mathrm{S}_{\text {surr }}+\Delta \mathrm{S}_{\text {sys }} / \Delta \mathrm{S}_{\text {tot }}=1045.6-563.7 \tag{1}\\ & / \Delta \mathrm{S}_{\text {tot }}=(+) \mathbf{4 8 1 . 9}\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{align*}$ Allow TE from (a)(ii) and (a)(iii) Allow correct answers given in $\mathbf{k J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$ e.g. $0.4819 \mathbf{k J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$ Ignore SF except 1 SF If candidates forget to convert $\Delta \mathrm{H}$ into $\mathrm{J} \mathrm{mol}^{-1}$, then $\Delta \mathrm{S}_{\text {tot }}=-562.7\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ would score (2) if correct working is included		3

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 1 \\ & (a)(v) \end{aligned}$	(Decrease in T) 1st mark: consideration of $\boldsymbol{\Delta} \mathbf{S}_{\text {system }}$ $\Delta \mathrm{S}_{\text {system }}$ is not (significantly) changed / is unchanged / remains (approximately) constant 2nd mark: consideration of $\boldsymbol{\Delta} \mathbf{S}_{\text {surr }}$ $\Delta \mathrm{S}_{\text {surr }}$ or $-\Delta \mathrm{H} / \mathrm{T}$ is more positive / larger / greater COMMENT ALLOW 'less negative’ 3rd mark: consideration of $\boldsymbol{\Delta} \mathbf{S}_{\text {total }}$ (So) increases $\Delta \mathrm{S}_{\text {tot }} /$ makes $\Delta \mathrm{S}_{\text {tot }}$ more positive / makes $\Delta \mathrm{S}_{\text {tot }}$ greater NOTE IF no reference / an incorrect reference made to $\Delta \mathrm{S}_{\text {system }}$, then only the 2 nd and 3 rd marks can be awarded NOTE If candidate states that $\Delta \mathrm{S}_{\text {surr }}$ becomes less +ve, no M2 But if then states $C Q$ that $\Delta \mathrm{S}_{\text {tot }}$ decreases award M3 as a TE		3

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (c) ~}$	(Makes it taste) sour / sharp / tart	fruity	$\mathbf{1}$
	IGNORE 'acidic' / 'bitter' NOTE Contradictory answers (e.g. 'sharp and sweeter') score (0)	sweet(er)	

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 1(d) \\ & \text { (i) } \end{aligned}$	1st mark:		3
	(\% of oxygen =) 43.9 (\%)		
	2nd mark:		
	Amount of $\mathrm{C}=49.3 / 12=4.1(\mathrm{~mol})$		
	Amount of $\mathrm{H}=6.8 / 1=6.8(\mathrm{~mol})$		
	Amount of $\mathrm{O}=43.9 / 16=2.7(\mathrm{~mol})$		
	3rd mark:		
	$\begin{aligned} & \text { Ratio } \mathbf{1 . 5} \mathbf{C}: \mathbf{2 . 5 ~ H : 1 0} \\ & (\equiv 3 \mathrm{C}: 5 \mathrm{H}: 2 \mathrm{O}) \end{aligned}$		
	ALLOW for 3rd mark:-		
	Decimal values that round up to these values (e.g. 1.497 C: $\mathbf{2 . 4 7 8} \mathbf{H :} \mathbf{1} \mathbf{O}$ scores the 3rd mark)		
	(1)		
	ALLOW		
	Mr_{r} of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}=73\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$		
	$\% C=\frac{36}{73} \times 100=49.3 \%$		
	and		
	$\% H=\frac{5}{73} \times 100=6.8 \%$		
	(1)		
	$\begin{aligned} & \% O=43.9 \% \\ & \text { ALLOW 43.8\% } \end{aligned}$		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
2(a)	(The energy / enthalpy change that accompanies the formation of) one mole of $a(n$ ionic) compound ALLOW as alternative for compound: lattice /crystal / substance / solid / product / salt from (its) gaseous ions IGNORE References to 'standard conditions' or any incorrect standard conditions ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:- energy change / enthalpy change per mole $\begin{equation*} 2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s}) \tag{1} \end{equation*}$ NOTE If lattice energy of dissociation is given (e.g. "energy required to break down 1 mol of an ionic lattice into its gaseous ions") max (1) for the 2nd scoring point 'gaseous ions'	‘energy required’ / 'energy needed' / 'energy it takes' 'from one mole of gaseous ions' (no 2nd mark) 'from gaseous elements' (no 2nd mark)	2

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	FI RST, CHECK THE FI NAL ANSWER IF answer $=\mathbf{- 2 5 2 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ then award (2) marks, with or without working Otherwise look for $\begin{aligned} & -414=(2 \times 108)+249+(2 \times 496) \\ & +(-141)+790)+\Delta \mathrm{H}_{\mathrm{LE}} \end{aligned}$ OR $\begin{aligned} & \Delta H_{\mathrm{LE}}=-414-[(2 \times 108)+249+ \\ & (2 \times 496)+(-141)+790] \end{aligned}$ OR A correct expression using letters e.g. $\begin{equation*} F=(2) D+E+(2) C+A+B+G \tag{1} \end{equation*}$ $\begin{equation*} (=-414-2106)=-2520\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ NOTE ALLOW for 1 mark: -1692 (wrong sign for 414) -1916 (2×108 and 2×496 not used for Na^{+}) $-2412\left(2 \times 108\right.$ not used for $\left.\mathrm{Na}^{+}\right)$ $-2024\left(2 \times 496\right.$ not used for Na^{+}) +2520 (wrong sign for final answer) -2802 (sign changed for 1st electron affinity of oxygen) -2395.5 (atomization of oxygen halved) NOTE Penalise incorrect units (e.g. kJ mol) ONCE only NO ECF from incorrect answers to (b) (i)	$-1088\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (0) overall (as two errors) $(+) 1088\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ also scores (0) overall (as several errors)	2

Question Number	Acceptable Answers	Reject	Mark
* 2(c)	ALLOW reverse argument where appropriate First mark MgO more exothermic (than MgS) IGNORE ‘greater' / 'higher' / 'larger' Second mark S^{2-} larger than O^{2-} Third mark Charges on O^{2-} and S^{2-} same OR Charges on (all) ions same OR S^{2-} smaller charge density than O^{2-} NOTE This mark is awarded if both formulae for the ions O^{2-} and S^{2-} are mentioned Fourth mark O^{2-} (forms) stronger (electrostatic) attractions (than S^{2-}) IGNORE just 'stronger (ionic) bonds' Penalise ONCE ONLY the use of the word 'atom(s)' or 'molecule(s)'/ use of formulae such as ' Mg^{\prime} ' O^{\prime} ' O_{2} ', etc. AND/OR Penalise ONCE ONLY use of words such as just 'magnesium' (instead of magnesium ions/ Mg^{2+}) and/or just ‘oxygen' (instead of oxide ions/ O^{2-}) Mark each point independently	"MgS is larger than MgO" S^{2-} has a larger atomic radius than O^{2-}	4

Question Number	Acceptable Answers	Reject	Mark
3 (a)	$[: \mathrm{Li}]^{+}(1)\left(\begin{array}{c} x x \tag{1}\\ x x \mid x x \\ x x \end{array}\right)-$ Accept all or mixture of dots and crosses Check inner electrons present on lithium If no element symbols but fully correct with Li first give 1 max If no / incorrect charge(s) if the electrons are correct 1 max If arrow drawn from third / outer shell electron on lithium to join electrons in iodine / iodide with correct charges scores 1 max Brackets are not essential		2
Question Number	Acceptable Answers	Reject	Mark
3 (b)	$\begin{align*} & \mathrm{Li}(\mathrm{~s}) \text { and } \mathrm{Li}^{+}(\mathrm{g}) \text { and } \mathrm{I}^{-}(\mathrm{g}) \tag{1}\\ & 1 / 2 \mathrm{I}_{2}(\mathrm{~s}) \text { and } \mathrm{I}(\mathrm{~g}) \tag{1}\\ & \left(\Delta \mathrm{H}_{\mathrm{at}}\right)\left[1 / 2 \mathrm{I}_{2}(\mathrm{~s})\right] \tag{1} \end{align*}$ Notice the square brackets are essential for this mark If wrong state for iodine element ie if $1 / 2 \mathrm{I}_{2}(\mathrm{~g} / \mathrm{I})$ and consistent $\left(\Delta \mathrm{H}_{\mathrm{at}}\right)\left[1 / 2 \mathrm{I}_{2}(\mathrm{~g} / \mathrm{I})\right]$ allow third mark If $\mathrm{I}(\mathrm{s})$ given for element and ($\Delta \mathrm{H}_{\mathrm{at}}$) [I(s)] allow third mark If wrong state with monatomic iodine both the last two marks lost If $\mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}$ appears ignore electron		3

Question Number	Acceptable Answers	Reject	Mark
3 (c)	First mark for one of: $-270=+159+107+520+$ electron affinity - 759 Or Electron affinity $=$ $-270-(159+520+107-759)$ (1) OR Electron affinity = $-270-159-520-107+759(1)$ Second mark for: (Electron affinity =) -297 (kJ mol ${ }^{-1}$) (1) -297 (kJ mol ${ }^{-1}$) alone scores (2) NB providing method is recognisable with one transcription error eg 795 for 759 and the final answer is consistent 1 max $\mathrm{NB}(+) 297\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) 1 \mathbf{m a x}$	Wrong unit e.g.	2

Question Number	Acceptable Answers	Reject	Mark
3 (d)	(Experimental lattice energy is) more negative / exothermic OR Theoretical lattice energy is less negative / exothermic OR Recognition that more energy released I rrespective of first answer then, any two from: Due to a degree of covalency Deviation from pure ionic model (in experimental value) OR The theoretical model is pure ionic bonding Polarization / distortion of the iodide / negative ions (by the lithium ion). Can be shown by diagram lodine/ I / I I_{2} ion is not acceptable but iodine / I anion is allowed Note I_{2} anion is not allowed	Greater / less Increase / decrease alone	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (e)}$	Electron affinities become less negative / less exothermic / more positive (going down Group 7)	Greater / less / Increase / decrease alone	$\mathbf{2}$
	As (added) electron further from the nucleus OR More shielding / shielded (from the nucleus)	Any indication of ionization/ removing an electron	(1)
Second mark stands alone Ignore larger (ionic) radius / atom / ion / charge density			

$\frac{\text { Number }}{41(\mathrm{a}) 1}$		
	$\begin{aligned} & \mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+ \\ & \mathrm{CO}_{2}(\mathrm{~g}) \\ & \mathrm{ALLOW}^{2 L L C O}(\mathrm{Mg})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \\ & +\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \text { All formulae and balancing (1) } \end{aligned}$ State symbols - mark independently; can be given even if eg MgCl_{2} formula incorrect or for $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})(1)$ $\mathrm{CO}_{3}^{2-}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})(1 \text { mark }$ max) ALLOW 1 missing/incorrect state symbol	2

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{4 1 (b) \mathbf { 1 }}$	Any two from	Bubbles (of gas)/ fizzing/ effervescence (1)			
Solid disappears/ disintegrates /gets smaller					
/dissolves					
$\mathrm{OR} \mathrm{MgCO}_{3}$ disappears (if given as solid in (i))					
(1)					
IGNORE clear solution forms					
Mixture gets warmer/cooler OR temperature change occurs/ heat change occurs(1)	Carbon dioxide /gas given off	Precipitate forms (no TE for $\mathrm{MgCl}_{2}(\mathrm{~s})$)	Just "exothermic"	\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
41(c)1(i)1	Moles acid $=((25 \times 2 / 1000))=0.05 / 0.050 /$ 5×10^{-2} lgnore units and sf		1

Question Number	Acceptable Answers	Reject	Mark
41(c)1(ii)1	Mass $\mathrm{Mg} \mathrm{CO}_{3}=((0.05 \times 84.3 \div 2))=2.1075 / 2.108$ $l 2.11 / 2.1(\mathrm{~g})$ ALLOW TE from (c)(i) and (a)	$2 / 2.12(\mathrm{~g})$	1
	ALLOW Moles acid $\times 84.3 \div 2$ for TE(from (i) (1) $(4.2(15))$ if factor of 2 missing for TE from (a))		
lgnore sf except 1 sf lgnore units			

Question Number	Acceptable Answers	Reject	Mark
41(c)1(iii)1	To ensure all acid reacts/ all acid is used up / to ensure product is neutral/ it (HCl) is neutralised	All reactants used up To ensure reaction is complete (without reference to HCl) To ensure yield is high To ensure magnesium carbonate is in excess	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
41(c)1(iv)1	Filter	ALLOW centrifuge/ decant/ pour off / (use) filter paper Collect MgCl_{2} in filter paper Use filter paper to dry crystals Evaporate	$\mathbf{1}$
Ignore comments about heating solution first to concentrate it			

Question Number	Acceptable Answers	Reject	Mark
41(c)1(v)1	$\begin{align*} & 100 \% \text { yield }=(203.3 \times 0.025) / 5.08(25) \mathrm{g})(1) \\ & \text { yield }=\left(\frac{3.75}{5.08} \times 100\right)=74 \%(1) \tag{1}\\ & \text { OR } \\ & \text { Mol magnesium chloride }=\frac{(3.75}{203.3)} \\ & =0.018445 / 0.01845 / 0.0184 / 0.018 \tag{1}\\ & \text { yield }=\frac{(100 \times 0.01845)}{0.025} \\ & =74 \%(1) \end{align*}$ Second mark can be given as TE if expected yield or number of moles is wrong. ALLOW 73.82/73.78/73.8 /73.6 /other answers rounding to 74% from earlier approximations /72 (from 0.018 moles) Allow TE from (a) and or (c)(i) and or (c)(ii) If the ratio HCl to MgCl_{2} is $1: 1$ ans 37% (2) If moles of HCl in (c)(i) are wrong (2) If (a) and (c)(i) are correct 37% scores (1) If moles $\mathrm{MgCO}_{3}=0.05$ allow TE giving 37/ 36.9% Ignore sf except 1 sf	70	2

Question Number	Acceptable Answers	Reject	Mark
41(c)1(vi)1	Some stays in solution / losses on transferring from one container to another/ loss on filtering /crystals left behind/some left on filter paper etc	Incomplete reaction/side reaction Lost as waste products Any one	$\mathbf{1}$
	Lost to environment ALLOW correct answers with other comments which are not incorrect eg "there may be some spillage and also"	Lost in manipulation? Hydrolysis Weighing errors Just "spillage"	

Question Number	Acceptable Answers	Reject	Mark
41(d)(i)1	Not 100\% ionic /almost completely ionic OR (partial) covalent character/ almost no covalency OR Discrepancy in BH values indicates polarisation (of ions) (1) Mark can be given if answer here refers to bond strength and the answer above is included in (ii)	Magnesium chloride is covalent Magnesium chloride is partially ionic	$\mathbf{1}$
Just "polarity of ions"			

Question Number	Acceptable Answers	Reject	Mark
41(d)(ii)1	QWC I^{-}larger (than Cl^{-}) (1) so (ion) easier to polarise /distort (1) ALLOW for $2^{\text {nd }}$ mark increases covalent character / more covalent than MgCl_{2} / converse for $\mathrm{MgCl}_{2} /$ description of polarisation instead of the term If clearly ions, allow reference to iodine instead of iodide ("iodine has a larger ion") Read in conjunction with (i). Direct comparison not needed if (i) covers bonding in chloride.	Size of atoms rather than ions I_{2} is larger than Cl_{2} I_{2} molecules are polarised Mg^{2+} is polarised lodine more electronegative than chlorine	2
Question Number	Acceptable Answers	Reject	Mark
41(e)1(i)1	$\begin{aligned} & \left.\frac{(100}{10^{6}} \times 20\right)=2 \times 10^{-3}(\mathrm{~g}) \\ & \text { ALLOW } 0.002(\mathrm{~g}) \\ & 1 / 500(\mathrm{~g}) \\ & 2 \times 10^{-6} \mathrm{~kg} \\ & \text { IGNORE \% as unit } \end{aligned}$	$2 \times 10^{-3}=0.0002$	1

Question Number	Acceptable Answers	Reject	Mark
41(e)1(ii)1	(More) soluble (in water)/ (more) soluble in blood stream/ can be given as solution/ won't produce gas in stomach / won't react with stomach acid/ doesn't produce CO_{2} Converse answers for MgCO_{3} Or other valid answers ALLOW can be given in liquid formMgCl_{2} is a liquid MgCO_{3} is too reactive	$\mathbf{1}$	

