
1	How many molecular ion peaks (parent ion peaks) are in the mass spectrum of		
	1,2-dibromoethane?		
	Assume the only isotopes present are ¹ H, ¹² C, ⁷⁹ Br and ⁸¹ Br.		
	⊠ A	1	
	⋈ В	2	
	⊠ C	3	
	■ D	4	
		(Total for Question = 1 mar	k)
2	This q	uestion is about two isomeric alcohols and two isomeric carbonyl compounds.	•
		Butan-1-ol, CH ₃ CH ₂ CH ₂ CH ₂ OH	
		Butan-2-ol, CH ₃ CH ₂ CH(OH)CH ₃	
		Butanal, CH ₃ CH ₂ CHO	
		Butanone, CH ₃ CH ₂ COCH ₃	
		nich of these compounds would not produce a colour change when heated th acidified sodium dichromate(VI) solution?	(1)
	× A	Butan-1-ol	
	В	Butan-2-ol	
	⋉ С	Butanal	
	⊠ D	Butanone	
	(b) Wh	nich compound could give a peak at $m/e = 31$ in its mass spectrum?	(1)
	⋈ A	Butan-1-ol	
	⊠ B	Butan-2-ol	
		Butanal	
	⊠ D	Butanone	
	(c) Wh	nich compound could not give a peak at $m/e = 43$ in its mass spectrum?	(1)
		■ A Butan-1-ol	(1)
		■ B Butan-2-ol	

- C Butanal
- **D** Butanone
- (d) The infrared spectrum of one of these compounds is given below.

Use the infrared absorptions, in wavenumbers, to identify the compound.

Bond	Wavenumber range / cm ⁻¹
O—H (alcohol)	3750 – 3200
C—H (alkane)	2962 – 2853
C—H (aldehyde)	2900 – 2820 and 2775 – 2700
C=O (aldehyde or ketone)	1740 – 1680

The compound with this IR spectrum is

■ A butan-1-ol.

■ B butan-2-ol.

D butanone.

(Total for Question = 4 marks)

(1)

3	The co	prrect sequence for the processes that occur in a mass spectrometer is
	⊠ A	vaporization, ionization, acceleration, deflection and detection.
	⊠ B	vaporization, acceleration, ionization, deflection and detection.
	⊠ C	ionization, vaporization, acceleration, deflection and detection.
	⊠ D	ionization, vaporization, deflection, acceleration and detection.
		(Total for Question = 1 mark)
4	Which	of the following ions would be deflected most in a mass spectrometer?
	⊠ A	³⁵ Cl ⁺
	⊠ B	³⁷ C ⁺
	⊠ C	³⁷ C ²⁺
	⊠ D	(35CI —37CI)+
		(Total for Question = 1 mark)
5		ass spectrum of butane, C_4H_{10} , where would a peak be seen for the molecular t had a charge of 2+?
	⊠ A	29
	⊠ B	56
	⊠ C	58
	⊠ D	60
		(Total for Question = 1 mark)

6 The formula for oleyl alcohol, which is present in sperm whale oil and was used as a lubricant, is shown below.

$$CH_3(CH_2)_7$$
 $(CH_2)_7CH_2OH$

(a) The systematic name for oleyl alcohol is

(1)

- **A** *E*-octadec-9-en-1-ol.
- **B** Z-octadec-9-en-1-ol.
- **C** *E*-octadec-8-en-1-ol.
- **■ D** *Z*-octadec-8-en-1-ol.
- (b) Which intermolecular forces are present between oleyl alcohol molecules?

(1)

- □ A London forces only
- B Hydrogen bonds and London forces only
- ☑ C Hydrogen bonds and permanent dipole–dipole forces only
- D Hydrogen bonds, permanent dipole-dipole and London forces
- (c) Which of the following is the most likely structure of the species to cause a peak at m/e 31 in the mass spectrum of oleyl alcohol?

■ A CH,O

(1)

- B CH,OH
- C CH₂O+
- ☑ D CH₂OH⁺
- (d) What would you expect to see if oleyl alcohol is tested separately with bromine water and heated with acidified sodium dichromate(VI) solution?

/	a	٦
1	Ш	- 1
٦.		J

	_
-1	Δ
	$\boldsymbol{\Lambda}$

 \square B

⊠ C

X D

Bromine water Acidified sodium dichromate(VI) solution

Decolorises Turns green

No colour change No colour change

Decolorises No colour change

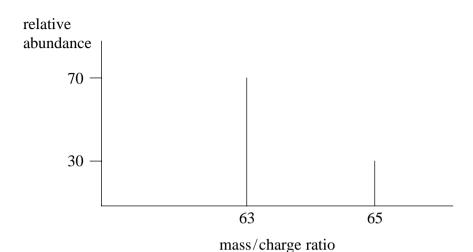
No colour change Turns green

7	Bromine has two isotopes with relative isotopic masses 79 and 81. Which of the following values for mass/charge ratio could correspond to a peak in the mass spectrum of bromine, Br_2 ? You should assume the ions detected have a single positive charge.			
	X	A	79.9	
	X	В	80	
	X	C	159	
	X	D	160	
			(Total for Question = 1 mark)	
8	B The concentration of a solution of potassium iodate(V) can be determined by the liberation of iodine, followed by titration with sodium thiosulfate.			
	A s	uita	ble indicator is	
	X	Α	methyl orange.	
	X	В	phenolphthalein.	
	X	C	starch.	
	X	D	universal indicator.	

9 The ther	mite reaction, shown below, is a useful industrial process.						
	$Fe_2O_3(s) + 2AI(s) \rightarrow 2Fe(I) + AI_2O_3(s)$						
The iro	The iron in this reaction undergoes						
⋈ A	disproportionation.						
⊠ B	oxidation.						
⊠ C	redox.						
⊠ D	reduction.						
	(Total for Question = 1 mark)						
•	uestion is about the following isomeric compounds with the molecular formula and molar mass 72 g mol ⁻¹ .						
A CH ₃	CH ₂ CH ₂ CHO						
B (CH	₃) ₂ CHCHO						
C CH ₃	CH ₂ COCH ₃						
D CH ₃	CH=CHCH ₂ OH						
(a) Which co spectrur							
	(1)						
В							
⊠ C							
⊠ D							
(b) Which co							
⋈ A	(1)						
В							
⊠ C							
⊠ D							

(Total for Question = 5 marks	5)
⊠ D	
☑ C	
⋈ A	(1)
(e) Which compound would NOT react with hydrogen cyanide under suitable conditions to form a hydroxynitrile?	(1)
□ D	
	(1)
(d) Which compound can be reduced to give a chiral product?	(1)
□ D	
⊠ C	
■ B	
	(1)
(c) Which compound would give a pale yellow precipitate when reacted with iodine in alkaline solution?	<u>:</u>

11	1 There would be a major peak in the mass spectrum for butan-1-ol, CH ₃ CH ₂ CH ₂ CH ₂ OH, but not for butan-2-ol, CH ₃ CH ₂ CH(OH)CH ₃ , at <i>m/e</i> value		
	$\boxtimes \mathbf{A}$	15	
	\boxtimes B	17	
	\square C	29	
	\square D	43	
		(Total for Question 1 mark)	
1	12 How many molecular ion peaks (parent ion peaks) occur in the mass spectrum of 1,2-dibromoethane, CH ₂ BrCH ₂ Br?		
	Assun	ne the only isotopes present are ¹ H, ¹² C, ⁷⁹ Br and ⁸¹ Br.	
	\mathbf{X} A	1	
	⊠ B	2	
	⊠ C	3	
	⊠ D	4	
		(Total for Question 1 mark)	


13 Which of the following features is shown by the mass spectra of propanone and propanal?

		<i>m/e</i> of the molecular ion	Fragmentation pattern
X	A	same	same
×	В	same	different
×	C	different	same
×	D	different	different

(Total for Question = 1 mark)

14 The mass spectrum for a sample of a metal is shown below.

The relative atomic mass of the metal is

- **△ A** 63.2
- **B** 63.4
- **□ C** 63.6
- **D** 64.0

(Total for Question = 1 mark)

15 Which of the following ions would undergo the greatest deflection in a mass spectrometer?

- **■ B** 35Cl⁺
- **C** 37Cl⁺

(Total for Question = 1 mark)

16	Which of the following values for the mass/charge ratio for singly charged ions would be present in the mass spectrum of propanal, CH ₃ CH ₂ CHO, but not of propanone, CH ₃ COCH ₃ ?		
	\boxtimes A	1.	5
	\boxtimes B	29)
	⊠ C	43	3
	\boxtimes D	58	3
			(Total for Question = 1 mark)
17			CH ₃ CH ₂ CHO, and propanone, CH ₃ COCH ₃ , are isomers, but only propanal has nt peak in its mass spectrum at mass/charge ratio
	⊠ A	15	
	⊠ B	29	
	⊠ C	43	
	⊠ D	58	
			(Total for Question = 1 mark)
	peal	k dı	etones, $CH_3COCH_2CH_2CH_3$ and $CH_3CH_2COCH_2CH_3$, both have M_r 86. Which the to fragmentation into singly charged ions would you expect to be present in the electrum of one but not the other?
	\boxtimes	A	71
	X	В	57
	X	C	43
	\times	D	29
			(Total for Question 1 mark)