Questions

Q1.

This question is about some carbonyl compounds with the molecular formula C₅H₁₀O.

An aldehyde with molecular formula $C_5H_{10}O$ has a ^{13}C NMR spectrum with three peaks.

The high resolution ¹H NMR spectrum of this aldehyde has two peaks and neither of them is split.

Deduce the **displayed** formula of this aldehyde. Justify your answer by referring to both NMR spectra.

(4)

(Total for question = 4 marks)

Q2.

Data from the high resolution 1H (proton) NMR spectrum of the ester ${\bf Q}$ are shown in the table.

Chemical shift (δ) / ppm	Splitting pattern of peak	Relative peak area
2.50	singlet	3
1.56	quartet	4
1.43	singlet	3
0.92	triplet	6

Part of the structure of **Q** is shown.

Complete the structure of **Q**.

Justify your answer by linking the proton environments in your structure to the relative peak areas and the splitting pattern of the peaks.

H ₃ C O	(1)
	•
	•
	•
	•
	•

(Total for question = 7 marks)

/7\

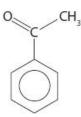
Q3.

This question is about the analysis of organic compounds.

There are similarities and differences in the ¹³C NMR spectra and the high resolution ¹H NMR spectra of isomeric organic compounds.

Compare the NMR spectra of propan-1-ol with those of propan-2-ol.

Include the number of peaks, relative peak areas and splitting patterns, where appropriate.


Chemical shift values are **not** required.

(6)
•

(Total for question = 6 marks)

Q4.

Phenylethanone is an ingredient in many types of chewing gum.

One method for the production of phenylethanone involves the reaction of benzene with ethanoyl chloride, CH_3COCI .

Phenylethanone can be distinguished from its structural isomer, phenylethanal, in a number of different ways.

(i)	Whic	h would react with phenylethanone but not with phenylethanal?	(1)
X X X	A B C D	acidified sodium dichromate(VI) alkaline iodine solution Fehling's solution Tollens' reagent	(1)
(ii) be		the steps to show how 2,4-dinitrophenylhydrazine could be used to distinguish phenylethanone and phenylethanal.	
			(4)
•••			
•••			

* (iii) Compare and contrast the high resolution proton NMR spectra of phenylethanone and phenylethanal.

You should use the Data Booklet.

(Total for question = 11 marks)

Q5.

Esters have many uses due to their characteristic aromas and often have common names. For example, isoamyl acetate is referred to as banana oil and amyl acetate has a scent similar to apples.

What is the number of peaks in a ^{13}C NMR spectrum of isoamyl acetate and of amyl acetate?

		isoamyl acetate	amyl acetate
×	A	5	6
	В	6	6
×	C	6	7
Ž	D	7	7

(Total for question = 1 mark)

(1)

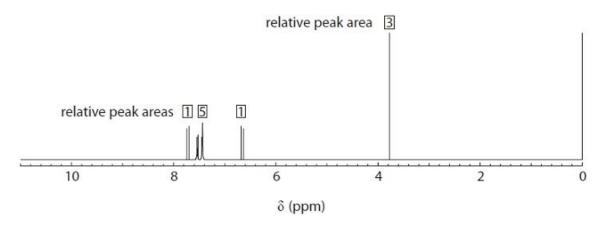
Q6.

Antifebrin was the trade name for N-phenylethanamide which was used as a painkiller until paracetamol was discovered.

What is the number of peaks in a C-13 NMR spectrum of Antifebrin?

(1)

- B 6
- ☑ D 8


(Total for question = 1 mark)

Q7.

Methyl cinnamate, $C_{10}H_{10}O_2$, is a white crystalline solid used in the perfume industry.

A sample of methyl cinnamate was analysed by high resolution proton NMR spectroscopy.

A simplified spectrum is shown.

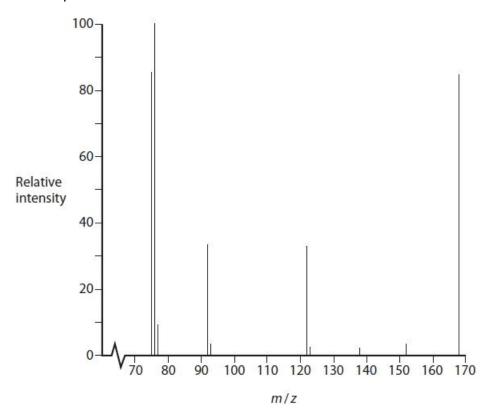
(i) Name the compound responsible for the peak at a chemical shift of 0 ppm, stating its purpose.

(2)

(ii) Identify the proton environment that causes the peak at a chemical shift of 3.8 ppm by circling it on

the diagram shown. Fully justify your answer.

	0	(3)


(Total for question = 5 marks)

Q8.	
This question is about the use of NMR spectroscopy to distinguish between isomers of $C_6H_{12}O_2$.	
i) There are three other isomers of $C_6H_{12}O_2$ which are carboxylic acids with five peaks in heir carbon-13 NMR spectra.	
Draw the structural formula of two of these isomers.	(2)
(ii) Draw the skeletal formula of a cyclic diol isomer of $C_6H_{12}O_2$ that has only two peaks in ts carbon-13 NMR spectrum.	n (1)
(Total for question = 3 mar	ks)

Q9.

Organic compound **D** contains the elements carbon, hydrogen, oxygen and nitrogen only.

Part of the mass spectrum of **D** is shown.

Compound **D** contains a benzene ring.

(i)	Give the n	nolecular	formula of the	ne species	that causes	s the peak	at $m/z =$	76 in the ma	ass
sp	ectrum of [) .							

(1)

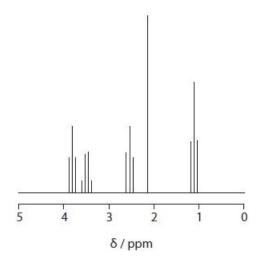
(ii) Draw the structures of the three possible isomers of ${\bf D}$ containing a benzene ring.

(2)

(iii) The ¹³C NMR spectrum of compound **D** has four peaks.Identify the structure of **D**. Justify your answer by labelling the different carbon environments in **all** the structures drawn in (ii).

(3)

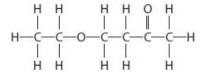
(Total for question = 6 marks)


Q11.

This question is about the use of NMR spectroscopy to distinguish between isomers of $C_6H_{12}O_2$.

(i) Draw the structural formulae of the **two** esters with formula $C_6H_{12}O_2$ that each have only **two** peaks, both singlets, in their high resolution **proton** NMR spectra. The relative peak areas are 3:1 for both esters.

(2)


(ii) The high resolution **proton** NMR spectrum of another isomer of $C_6H_{12}O_2$ is shown.

The ratios of the number of protons for the five sets peaks in the spectrum are given in the table.

δ/ppm	3.8	3.5	2.6	2.2	1.2
Ratio of the number of protons	2	2	2	3	3

Show that **all** these data are consistent with the displayed formula shown. Refer to the five chemical shifts and explain **two** of the splitting patterns.

(5)
•
•

(Total for question = 7 marks)

Q12.

The painkiller paracetamol can be synthesised from phenol in three steps. The percentage yield for each step is shown.

OH OH OH OH OH OH Step 3
$$70\%$$
 Step 3 70% NHCOCH₃ phenol

In Step ${\bf 1}$ another product also forms. The two products can be distinguished using their ${}^{13}{\rm C}$ NMR spectra.

Complete the table to show the number of peaks in each ¹³C NMR spectrum.

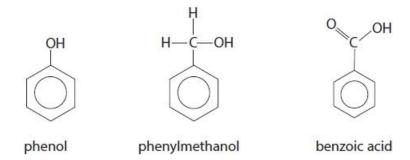
Product

OH

OH

NO2

Number of peaks in the


13C NMR spectrum

(Total for question = 2 marks)

(2)

Q13.

This is a question about the analysis of three aromatic substances with —OH groups.

Spectroscopy is an effective means of distinguishing between molecules.

(i) Compare and contrast the infrared spectra of phenol, phenylmethanol and benzoic acid. Include relevant bonds and their wavenumber ranges using the Data Booklet.
(5)

 (ii) Predict the number of peaks present, and their chemical shifts, in the ¹³C nuclear magnetic resonance (NMR) spectrum of phenylmethanol. Use the information in the Data Booklet to help you. 	(2)
H C C H H C C H phenylmethanol	(3)
pnenyimetnanoi	
(iii) Give the formula of a fragment ion, with its m/z value, that you would expect to be present in the mass spectrum of benzoic acid but not in the mass spectrum of phenol or the mass spectrum of phenylmethanol.	
prioriyimetriarioi.	(2)
(Total for question = 10 mar	ks)