Question Number	Acceptable Answers	Reject	Mark
1(a)	C _n H _{2n}		1
	ALLOW letters other than n		

Question	Acceptable Answers	Reject	Mark
Number			
1(b)	A compound which contains $(C=C)$		1
	double bonds		
	OR		
	A compound that will undergo		
	addition reactions		
	OR		
	Does not contain the maximum		
	number of hydrogen atoms		

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	<i>E</i> -3-ethylhex-2-ene (2)		2
	(1) mark for 3-ethylhex-2-ene(1) mark for 'E'		
	IGNORE any missing hyphens or any hyphens replaced by commas		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	The four atoms/four groups around the C=C double bond are different OR No two groups are the same OR There are no common groups on either side of the C=C double bond OR There are two alkyl groups on one of the carbon atoms (in the C=C double bond) OR There are three alkyl groups around the double bond OR An indication of the existence of Priority Rules (for E-Z nomenclature) OR One of the carbon atoms (of the C=C double bond) is not bonded to a hydrogen atom ALLOW 'functional groups' for 'groups'	Each side is not symmetrical	1

ALLOW displayed or skeletal formulae throughout 24(d)

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)	CH ₃ CH ₃ ALLOW displayed or skeletal formulae throughout 24(d)	C ₂ H ₆	1
Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	CICH ₂ CH ₂ CI / CH ₂ CICH ₂ CI	₂ H ₄ Cl ₂	1
Question Number	Acceptable Answers	Reject	Mark
1(d)(iii)	HOCH ₂ CH ₂ OH / CH ₂ OHCH ₂ OH	C ₂ H ₆ O ₂	1
	·		
Question	Accentable Answers	Reject	Mark

Question	Acceptable Answers	Reject	Mark
Number			
1(d)(iv)	HOCH ₂ CH ₂ Br / CH ₂ OHCH ₂ Br	$BrCH_2CH_2Br;$ $C_2H_5OBr; C_2H_4Br_2$	1
		02115001, 02114012	

Question Number	Acceptable Answers	Reject	Mark
1(e)	Major product route: $ \begin{array}{c} H \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$		4
	Second mark: Structure of correct secondary carbocation (1)		
	Third mark:Curly arrow from anywhere on the bromide ion towards the C+ on the carbocationNOTE:The bromide ion must have a full negative charge, but the lone pair of electrons on the BrNEED NOT be shown		
	Fourth mark: Choice of 2-bromopropane as major product (1)		
	For showing the major product mechanism correctly (4)		
	• both arrows (1)		
	carbocation intermediate (1)		
	 attack by bromide ion (1) (Bromide ion must show a full negative charge. The lone pair of electrons need not be shown) 		
	 choice of 2-bromopropane as major product (1) 		

Single-headed arrows used throughout max Minor product route max (3)	(3)
$\begin{array}{cccccc} H & & CH_3 & H & CH_3 \\ H & & +C & C-H & H & CH_3 \\ H & & +C & C-H & \to H-C-C-H \\ H & & H & H & Br & H \\ H & & Br & H \\ H & & Br & H \end{array}$	
If the minor product route is shown, the last mark is lost, but the first three marks can be scored consequentially as follows: -	
both arrows	(1)
carbocation intermediate	(1)
 attack of bromide ion (NOTE: The bromide ion must show a negative charge. The lone pair of electrons need not be shown) 	(1) full
NOTE: If a correct mechanism for the electrophilic addition of HBr to ethene is shown then mat (2) (i.e. the first and the third marks in the mechanism)	x

Question Number	Acceptable Answers	Reject	Mark
1(f)(i)	H H H H (1) $H H H (1)$ $H H H (1)$		2
	NOTE: CH ₃ group does not have to be displayed.		
	IGNORE if any connectivity is shown from the \mathbf{H}_3 in a C \mathbf{H}_3 group		
	IGNORE bond angles		
	ALLOW one mark for just but-2-ene's structural formula		

Question Number	Acceptable Answers	Reject	Mark
	 Acceptable Answers ONE of:- No atoms lost (or gained) No elements lost (or gained) (Only) one product (is formed) (Produced by) an addition reaction Addition polymer(ization) Polymer is a repeat of the monomer No small molecules (formed) No co-products No waste products Same C: H ratio Same ratio of carbon: hydrogen 	(Monomer and polymer have) ' same number of carbon and hydrogen atoms'	1
	atomsSame ratio of each elementSame ratio of atoms		

Question	Acceptable Answers	Reject	Mark
Number 1(f)iii	AND some correct justification is needed	Statements such as 'the atom	1
	ONE answer from:-	economy is almost 100%'	
	100% as addition reaction	OR Just "it has a	
	100% because all the atoms are incorporated into the polymer	high atom economy"	
	100% because (only) one product is formed		
	100% because (only) one desired product is formed		
	100% because no atoms are lost		
	100% because no waste products		
	100% because no small molecules (formed)		
	100% as no co-products		
	100% as no by-products		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	C_nH_{2n+2} or any symbol in place of n		1
	Ignore C ₅ H ₁₂		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	(structural / chain) isomers		1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	H H H C H H C C C C C C C H H H H H H H	Structures in which any bonds or atoms are omitted Structures with CH ₃ groups	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iv)	2,2-dimethylpropane (1) Allow dimethylpropane, 2-dimethylpropane 2,2 dimethylpropane, 2 dimethylpropane Ignore hyphens, commas, spaces		1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	$CH_4 + 1\frac{1}{2}O_2 \rightarrow CO + 2H_2O$ Formulae (1) balance (1) Or multiples Ignore state symbols No TE on any other species		2

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Insufficient / not excess oxygen / air	Reactant does not react completely with oxygen Just 'methane in excess'	1

Question		Reject	Mark
Number	Acceptable Answers		
2	Any two from		2
(b)(iii)	CO is toxic / poisonous (allow harmful) (1)	Explosive	
		Reactants	
	Less energy is produced (allow (methane)	wasted	
	becomes a less efficient fuel) (1)		
	Unburned hydrocarbons react to form compounds which are toxic / harmful		
	(1)	Air pollution	
	Allow sooty deposits / carbon / particulates in atmosphere (ignore reference to global dimming) (1)		
	Unburned hydrocarbons are toxic / harmful (1)		
	If reference to damage to ozone layer, global warming and / or acid rain then max (1)		

Question Number	Acceptable Answers	Reject	Mark
*2(b) (iv)	Global warming / climate change (1)		3
	Due to (increase in concentration of) CO_2 in the atmosphere / CO_2 is a greenhouse gas (1)	(heat) from the sun	
	Traps the heat from the earth / IR radiation (re-radiating) from the earth (1) If reference to damage to ozone		
	layer then max (2)	Global dimming due to complete	
	Photochemical smog is formed (0)	combustion of	
	NO _x is produced (by reaction of nitrogen & oxygen) (1) and	hydrocarbon fuels	
	reacts with (volatile) organic compounds in sunlight (1)	Effects (e.g. reactions of unburned	
	Ignore references to increase in (of concentration) of H ₂ O in the atmosphere	hydrocarbons) due to <i>incomplete</i> combustion	
	Ignore references to the effects of climate change		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	The arrows show the movement of electrons (1)		2
	Single-headed/I denotes 1 electron and Double-headed/II denotes a pair of / 2 electrons /allow lone pair (1)	Just stating homolytic and heterolytic fission	
	Allow Explanations just in terms of electron movement in bond fission		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	CI CI CI 2 CI Equation (1) two arrows correctly showing a homolytic fission (1) Here and in subsequent mechanisms the covalent bonds may be shown as lines or electron pairs or both The mechanism arrows may be shown on the same side or on different sides of the bond The single electrons need not be shown		2

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	$CH_4 + CI \rightarrow CH_3 + HCI (1)$ $CH_3 + CI_2 \rightarrow CH_3CI + CI (1)$ Ignore state symbols and curly arrows. Ignore order of equations so these marks may be scored if an initiation step with fission of C – H bond in methane is given in c(ii)		2

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iv)	Because a (chlorine) radical is regenerated / reformed / reproduced / recycled (by the propagation reactions each time a molecule of product is formed) (1) Allow methyl radical regenerated if initiation step with fission of C – H bond in methane is given in c(ii) and propagation order reversed	radical is regenerated by UV light (chlorine) radical is a catalyst	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(v)	$CH_3^{\bullet} + CH_3^{\bullet} \rightarrow C_2H_6 / 2CH_3^{\bullet} \rightarrow C_2H_6$ Ignore state symbols The single electrons need not be shown		1

Question Number	Acceptable Answers	Reject	Mark
2 (d)	UV light does not have enough energy to (ALLOW 'cannot') break the C-H bond (1) So no H free radicals / atoms are formed (therefore cannot combine to form H ₂) (1)	Just 'hydrogen' Just 'so no H ₂ formed	2