Question Number	Correct Answer	Reject	Mark
1(a)(i)	As a (co-)solvent for both aqueous silver nitrate and bromoalkane		(1)
	OR		
	As a (co-)solvent for polar and non-polar molecules		
	OR		
	To dissolve the halogenoalkane (as it is not water soluble)		
	OR		
	To allow the reagents/reactants to mix/dissolve		

Question Number	Correct Answer	Reject	Mark
1 (a)(ii)	$C_4H_9Br + H_2O \rightarrow C_4H_9OH + HBr$		(1)
	OR		
	$C_4H_9Br + H_2O \rightarrow C_4H_9OH + H^+ + Br^-$		
	Ignore state symbols even if incorrect		

Question Number	Correct Answer		Reject	Mark
1(a)(iii)	Cream		Just "yellow" Just "white"	(2)
	ALLOW		The state of the s	
	Pale yellow/off-white			
		(1)		
	$Ag^+(aq) + Br^-(aq) \rightarrow AgBr(s)$	(1)		
		(1)		

Question	Correct Answer	Reject	Mark
Number			
1(a)(iv)	trated ammonia		(1)
	(solution) / Concentrated NH ₃ ((aq))		
	ALLOW 'c' or 'conc' for concentrated		
IGNORE			
References	to "excess"		

Question Number	Correct Answer	Reject	Mark
1(a)(v)	С, В, А		1
	NOTE		
	The letters must be in this order		

Question Number	Correct Answer	Reject	Mark
*1(a)(vi)	Any two from		(2)
	 Tertiary is the fastest / primary is the slowest The C-Br bond is weakest in 2-methylbromopropane / in the tertiary (compound) 	If states that tertiary bromoalkane dissolves fastest	
	ALLOW here: The weaker the C-Br bond, the faster the hydrolysis		
	 (This is because the) methyl groups donate electrons 		
	OR		
	methyl groups are electron releasing		
	OR		
	(positive) inductive effect of methyl groups		
	IGNORE		
	Any resultant effect on the polarity of the C-Br bond, even if incorrect		
	 Tertiary carbocation OR intermediate formed by tertiary is (more) stable 		
	ALLOW branched for tertiary in all points		
	IGNORE Any references to steric hindrance Any references to S_N1 and/or S_N2		

Question Number	Correct Answer	Reject	Mark
1(b)(i)	COTTON WOORL A SORKED IN HEAT MINTURE		(2)
	M1: All three of the following points		
	(Cotton) wool / mineral wool / ceramic fibre (soaked in reactant)		
	in a reasonably horizontal test tube		
	 heating (shown anywhere under horizontal tube) 		
	(1)		
	M2: Collection of gas over water / in a gas syringe (1)		
	Ignore Bunsen valve		
	Mark these scoring points independently		

Question Number	Correct Answer	Reject	Mark
1 (b)(ii)	But-1-ene	Butene	(2)
	ALLOW	Butan-1-ene	
	1-butene (1	Butanene)	
	(1		

Question Number	Correct Answer	Reject	Mark
1 (c)(i)	(Type) substitution (1)	Elimination	(2)
	(Mechanism) nucleophilic (1)	Electrophilic / (free) radical	
	Allow words in either order		
	Just "S _N 2" scores one mark	S _N 1	

Question	Correct Answer	Reject	Mark
Number			
1 (c)(ii)	Butylamine/1-aminobutane/1-butylamine		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	Ethanol dissolves silver nitrate / silver ions and halogenoalkanes OR Ethanol (molecule) is polar and non-polar (solvent) OR Ethanol dissolves ionic and covalent compounds ALLOW Ethanol dissolves ionic and non-polar compounds	Ethanol is non-polar Just 'ethanol dissolves halogenoalkanes' Just 'water does not dissolve halogenoalkanes'	1
	Ethanol dissolves both types (of compound) So that the reactants can mix 'miscible' for 'dissolves' IGNORE Any references to rate	Just 'they dissolve in ethanol'	

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	To allow the temperature (of all the liquids) to equilibrate / to reach 50°C OR So that all the substances are at the same temperature ALLOW So that the temperature is constant		1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	Silver bromide IGNORE Formula even if incorrect (1) $Ag^{+} + Br^{-} \rightarrow AgBr \qquad (1)$ TE on incorrect silver halide $ALLOW$ Ionic equations with uncancelled ions $Ag^{+}Br^{-}$ as product IGNORE	Non-ionic equations	2
	state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
2(a) (iv)	Order: iodo, bromo, chloro ALLOW AgI, AgBr, AgCI OR I, Br, CI OR Iodine, bromine, chlorine (1) C—I is the weakest bond OR I is best leaving group ALLOW (if MP1 awarded) Rate depends on the strength of the C—X bond (1) IGNORE Explanations of the bond strengths, even if incorrect. References to bond length and atomic radius/size ALLOW Reverse argument for MP2	I ₂ , Br ₂ , CI ₂ Rate depends on the reactivity of X / X	2

Question Number	Acceptable Answers		Reject	Mark
2 (b)(i)	nucleophilic substitution Stand alone marks	(1) (1)		2
	S _N 2 alone scores one mark		S _N 1	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Some comparison is required.		1
	Hydroxide ion /OH ⁻ is a stronger nucleophile (than water)	Use of NaOH/OH for OH	
	ALLOW OH ⁻ is a better electron pair donor (than water) Concentration of hydroxide ion / OH ⁻ is higher OR Hydroxide ion / OH ⁻ is charged More hydroxide ion / OH ⁻ in NaOH (than water)	Just 'NaOH/alkali forms OH ⁻ more readily'	
	IGNORE OH ⁻ is more basic / alkaline Alkali is a stronger nucleophile OH ⁻ is more reactive ALLOW Reverse argument		

Question	Acceptable Answers	Reject	Mark
Question Number 2 (b) (iii)	Penalise omission of charge on hydroxide ion once only (in MP2) First mark HO H_2C G_3H_7 Both curly arrows First curly arrow from any part of the hydroxide ion (or the charge) to the carbon atom Second curly arrow from the C—Br bond to the bromine atom or just beyond Second mark Lone pair on oxygen of OH Third mark Partial charge on C—Br bond { C^{δ_+} —Br $^{\delta}$ } (1) ALLOW Correct S_N1 mechanism for full marks	OH with no / partial charge	Mark 3
	Curly arrow from hydroxide group from any part of the group including the charge. IGNORE transition state (even if incorrect) products (even if incorrect)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iv)	PCI ₅ : misty /steamy /white fumes/gas IGNORE Tests on product (e.g. turns blue litmus red) (1) K ₂ Cr ₂ O ₇ : orange solution turns green ALLOW Orange to blue (1)	smoke Just 'fumes'/ 'effervescence'	3
	K ₂ Cr ₂ O ₇ preferred because PCl ₅ reacts with water (as well as alcohols) ALLOW K ₂ Cr ₂ O ₇ preferred because PCl ₅ reacts with alkali / OH ⁻ /OH (1) IGNORE References to primary, secondary and tertiary alcohols	PCI₅ reacts with carboxylic acids	

Question Number	Acceptable Answers			Reject	Mark
2 (c)	Skeletal formula	Classification			3
	Br———	Primary/1°		Just the classificat ions	
	Br——	Secondary/2°			
	Br——	Tertiary/3°			
	Look at the structural three structures correct two structures correct	ect scores 2 ma			
	If all three structures then all three classif		-		
	Penalise displayed, p structural formulae of IGNORE Bond angles and nan	once only	ed or		

Question	Acceptable Answers	Reject	Mark
Number			
3(a)	UV light/ ultraviolet light/ (sun) light / UV radiation IGNORE References to heat and or pressure.		1

Question Number	Acceptable Answers	Reject	Mark
3 (b)	Species/ particle with unpaired electron Allow atom	Single electron	1

Question	Acceptable Answers	Reject	Mark
Number			
3(c)(i)	CI-CI bond is weaker than a C-H bond / breaks more easily than a C-H bond		1
	OR		
	Reverse argument		

Question	Acceptable Answers	Reject	Mark
Number			
3 (c)(ii)	$CHCI_3 + \bullet CI \rightarrow \bullet CCI_3 + HCI$		2
	(1)		
	$\bullet CCI_3 + CI_2 \rightarrow CCI_4 + \bullet CI$		
	(1)		
	Max (1) if 2 equations based on methane.		

Question Number	Acceptable Answers	Reject	Mark
3(c)(iii)	$\bullet CCI_3 + \bullet CI \rightarrow CCI_4$		1

Question Number	Acceptable Answers	Reject	Mark
3 (d)	100% as only one product / 100% as no by product(s) / 100% as no waste product (formed)	Just "atom economy is high(er)" / no mention of 100%	1

Total = 7 marks

Question	Acceptable Answers	Reject	Mark
Number			
4(a)(i)	Alcohol /ethanol (as solvent for NaOH)	Any other reagents	1
	IGNORE heat / pressure		

Question	Acceptable Answers	Reject	Mark
Number			
4(a)(ii)	Elimination		1

Question	Acceptable Answers	Reject	Mark
Number			
4(a)(iii)	Water (as solvent for NaOH) / aqueous	Aqueous silver	1
	(NaOH) / aqueous (ethanol)	nitrate	

Questio	Acceptable Answers	Reject	Mark
n		,	
Number 4			2
(a) (iv)	$H \longrightarrow CH_3$ $S + CI$ $S - CI$ CH_3 CH_3 CI CI CI CI CI CI CI CI		2
	$\begin{array}{c} CH_3 \\ H \longrightarrow C \longrightarrow C \\ OH^{-} C_2H_5 \end{array} \longrightarrow \begin{bmatrix} H & CH_3 \\ HO \longrightarrow C & \dots & CI \\ C_2H_5 \end{bmatrix} \longrightarrow HO \longrightarrow H + CI^{-} \\ C_2H_5 \end{array}$		
	ALLOW		
	CH_3 CI CI CI CI CI CI CI CI		
	$H \longrightarrow C^{+} \longrightarrow H \longrightarrow C_{2}H_{5}$ CH_{3} $H \longrightarrow C^{+} \longrightarrow CC \longrightarrow CH_{3}$ CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CCH_{3} CCH		
	Arrow from OH ⁻ to appropriate C (connected / previously connected) to CI (1)	OH without charge	
	Arrow from C-Cl bond to Cl producing Cl ⁻ (1)	Cl ['] (chlorine radical)	
	Accept three dimensional diagrams; displayed formulae; CH ₃ CH ₂ for C ₂ H ₅ Use of C ₄ H ₉ Cl as formula can score 1 for arrow from C-Cl bond to Cl Lone pair on hydroxide ion need not be shown		
	ALLOW solid lines instead of dotted lines in the transition state		

Question Number	Acceptable Answers	Reject	Mark
4 (b)	Steamy / misty / white and fumes / gas (1)	White smoke	2
	IGNORE fizzing	Solid	
	$CH_3CH_2CH(OH)CH_3 + PCI_5 \rightarrow CH_3CH_2CHCICH_3 + HCI + POCI_3$ (1)	CH ₃ CH ₂ CH ₂ CH ₂ OH	
	ALLOW C ₄ H ₉ OH and C ₄ H ₉ CI ALLOW PCI ₃ O	C ₄ H ₁₀ O	
	Accept displayed formulae ALLOW missing bracket in alcohol Stand alone marks		

Question Number	Acceptable Answers		Reject	Mark
4(c)(i)	With butan-2-ol: (change from orange) green / blue	to (1)	Reference to gas given off or formation of precipitate	2
	With A : remains orange / no change ALLOW 'no reaction' Any reference to 'yellow': max 1	(1)	Green-blue Just 'nothing'	

Question	Acceptable Answers	Reject	Mark
Number			
4(c)(ii)	CH ₃ CH ₂ COCH ₃ ALLOW displayed or skeletal		1

Question	Acceptable Answers	Reject	Mark
Number			
4(c)(iii)	Absorption /peak /trough for O-H / C-O / OH	Just - OH / CO	1
	bond / alcohol CO bond would disappear	Just 'alcohol peak'	
	OR		
	Absorption / peak / trough for C=O / CO ketone bond would appear	Just 'ketone peak'	