Question Number	Correct Answer	Reject	Mark
1 (a)(i)	Reaction 1 - (nucleophilic) substitution (1)		2
	Reaction 2 - elimination (1)		

Question Number	Correct Answer	Reject	Mark
1 (a)(ii) QWC	Reaction 1 - Water can behave as a nucleophile /water can donate a lone pair (from oxygen)/water has a lone pair/water forms an OH ion (1) And attack (positive) carbon (originally attached to Cl)/bonds to the carbon/bonds to the carbocation (1)		4
	and accepts a hydrogen ion/proton / donates e ⁻ pair to H/removes a proton/removes a hydrogen ion/removes a H ⁺ (1) In each case a correctly drawn mechanism could get (2)	Kemoves a H atom	

Question Number	Correct Answer	Reject	Mark
1 (b)(i)	Heterolytic (fission) Notes Accept phonetic/incorrect spelling as long as the word is recognisable		1

Question	Correct Answer	Reject	Mark
Number			
1 (b)(ii)	Butyl group less electron releasing/butyl group has less of a (positive) inductive effect (1) so less stable (positive charge on) carbocation (1) OR 1- chlorob ane is a primary halogenoalkane/the carbon only has 1 other C attached (1)	Negative inductive effect	2
	So forms a less stable carbocation (1) OR Primary carbocation is less stable than a tertiary carbocation (2) OR Water/ ⁻ OH can attack C on 1° chloroalkane more easily (so no need to form cation) OWTTE / 1° chloroalkane reacts via SN2 mechanism/C-O bond forms before C-CI breaks (1) As the carbon attacked is not surrounded by bulky groups OWTTE (1)		

Question	Correct Answer	Reject	Mark
Number			
1 (c)	Hydrogen (ion) can be eliminated from C on either side (of C attached to Cl)/double bond can form between 1 st and 2 nd or 2 nd and 3 rd carbon OWTTE (1)		4
	OR		
	double bond can't rotate (so methyl group and hydrogens can be fixed in position) to form E and Z isomers / geometric isomers/cis and trans/stereoisomers/or named in diagrams OWTTE (1)		
	allow descriptions in terms of cis and trans		
	H = C = C H H H $H = C = C H H$ $C = C H H$ $C = C H H$ $H H (1)$		
	H H H H C = C H H H (1)		
	H H H C H H C H H C H H C H H C H H C H H C H H C H H (1)		
	Methyl and ethyl groups do not need to be fully displayed		
	Structural formulae/skeletal formulae For all 3 (2) For 2 (1) For 1 (0)		
	For an incorrect haloalkane structure that can form 3 isomers including cis/trans (2 max) (eg 2-chloropentane)		

Question	Correct Answer	Reject	Mark
Number			
1 (d)	(Slower) as C-F bond is stronger (than C-CI)/fluorine bonds more strongly/fluorine holds the carbon more strongly		3
	Slower as F ⁻ is a poorer leaving group (than Cl ⁻) (1)		
	Use sodium hydroxide /NaOH/ potassium hydroxide /KOH/ hydroxide ions (1)	Alkali Hydroxide	
	As OH^- is a stronger nucleophile / OH^- has a full negative charge/ more strongly attracted to C^{δ^+} / OH^- has more lone pairs (than water)/ OH^- is more negative than water (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	Br Br Allow the bond to Br to be before or after the zig-zag line representing the 4C atoms, and to be at any angle Ignore bonds of unegual length	Br	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	2-iodo–(2-)methylpropane Accept (2-)methyl–2-iodopropane Ignore punctuation (brackets, hyphens, commas)	2,2- iodomethylpropane 2-iodobutane	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	$\begin{array}{ll} C_{4}H_{9}Br + 2NH_{3} \rightarrow C_{4}H_{9}NH_{2} + NH_{4}Br \\ \hline OR \\ C_{4}H_{9}Br + NH_{3} \rightarrow C_{4}H_{9}NH_{2} + HBr \\ \hline OR \\ C_{4}H_{9}Br + NH_{3} \rightarrow C_{4}H_{9}NH_{3}^{(+)}Br^{(-)} \\ \hline (1) \\ \hline Accept structural / skeletal formula for X \\ and product \\ \hline Allow inorganic product as ions \\ \hline Butylamine / 1-aminobutane / \\ 1-butylamine/ 1-butanamin \\ butan-1-amine \\ \hline (1) \end{array}$	Just word equations Molecular formula for organic product i.e. C ₄ H ₁₁ N Equation for elimination reaction Aminobutane Butamine	2
	Ignore incorrect spacing and punctuation	Any am ide	
	OR(N) butyl ammonium bromide if thirdequation given(1)		
	OR Answers with multiple substitutions giving $(C_4H_9)_2$ NH (1) dibutylamine (1) $(C_4H_9)_3$ N (1) tributylamine (1) $(C_4H_9)_4$ N ⁽⁺⁾ Br ⁽⁻⁾ (1) tetrabutyl ammonium bromide (1) No TE on naming a product in an incorrect equation except if C_4H_8 is shown in a correct or incorrect elimination equation		
	then 1 mark for naming it but-1-ene		

If correct equation and name	
(e.g. 2-amino-2-methylpropane) are given	
using Y max 1	

2			
(a)(iv)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3
	Arrow to I from within C-I bond (1) Formula of carbocation (1) Arrow from OH ⁻ to C ⁺ (1) If both arrows are shown before formation of intermediate max 2 Charge on OH ⁻ essential for third mark. Lone pair need not be shown. Ignore partial charges on C and I in Y Ignore arrows showing hydroxide ion formation in KOH / covalent KOH Ignore K ⁺ ions combining with I ⁻ / inorganic products Mechanism for X instead of Y Max 2 Correct SN2 mechanism can score first mark	Half arrows, but don't penalise twice δ ⁺ charge on intermediate	

Question Number	Acceptable Answers	Reject	Mark
2(a)(v)	(Nucleophilic) elimination (reaction) (of HI)	Electrophilic elimination Nucleophilic substitution	1
		Dehydration	

Question Number	Acceptable Answers		Reject	Mark
2 (b)	X Cream precipitate Allow off white / creamy white / white- cream / (very) pale yellow	(1)	Yellow/ creamy yellow precipitate for X	2
	Y yellow precipitate	(1)	Pale yellow precipitate for Y	
	One mark for two correct colours but not precipitates Mention of precipitate without colours doesn't score Ignore identity of precipitates even if incorrect	t		

Question	Acceptable Answers	Reject	Mark
Number 2(c)	C-Br stronger / C-I weaker with an attempt at an explanation (correct or incorrect) (1)as bond is shorter/ Br (atom) is smaller / as nuclei are closerOR reverse argument(1)Allow Br is more electronegative/ there is a bigger 	Br ₂ is smaller References to Br ⁻ implying bond is ionic. Br is more reactive	2
	Second mark depends on first		

Question	Acceptable Answers	Reject	Mark
3(a)	Names OR Formulae		4
	A = NaOH/KOH in ethanol /alcohol (1)	Water + ethanol /water + alcohol For A and B OH ⁻ /alkali (penalise once)	
	B = NaOH/KOH in water/ aqueous (1) IGNORE any reference to ethanol /alcohol /dilute	(perenee erree)	
	C = NaBr/KBr & (50% or moderately conc) H ₂ SO ₄ / P & Br ₂ / PBr ₃ /PBr ₅ /NaBr /KBr & H ₃ PO ₄ /HBr ALLOW phosphorus bromide (1) IGNORE red/white (phosphorus)	Dilute H_2SO_4 any mention of alkali	
	D = NH ₃ (in alcohol /in a sealed tube /at high pressure) (1) IGNORE aqueous	any mention of acid	

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	A = elimination (1) IGNORE 'nucleophilic' D = (nucleophilic) substitution (1)	mention of dehydration in A mention of electrophilic in A or D	2

Question	Acceptable Answers	Reject	Mark
3(b)(ii)	Mark the diagrams; then mark the explanation sections together Score (1) for intermediate/ transition state wrong way round		4
	$\begin{bmatrix} C_{3}H_{7} \\ H \longrightarrow O^{(1)} \\ H \end{pmatrix} \stackrel{\bigcirc}{H} H \end{bmatrix}$	Full O—C—Br bonds OH—C	
	IGNORE geometry and missing minus sign and $\delta + / \delta$ - (1)	+ sign	
	H ₃ CĊ⊕ CH ₃	δ+	
	(1)		
	Any two from		
	Tertiary carbocation more stable (than primary carbocation) ALLOW Tertiary carbocation very stable/fairly stable/stable (1) This mark can be awarded even if structures and other explanations are incorrect or missing	Just 'primary carbocation unstable'	
	Methyl groups stabilise charge (of carbocation) (through positive inductive effect)		
	Steric hindrance (by methyl groups) inhibits formation of (trigonal bipyramid) transition state/attack by nucleophile with tertiary compound		
	Steric hindrance is less with the primary halogenoalkane/more with tertiary halogenoalkane		
	ALLOW a description of steric hindrance e.g. blocking/less space		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	C–I bond weaker ALLOW C–I bond easier to break	Just C–I bond longer	1
	ALLOW iodine forms weaker bonds than bromine without mention of carbon		
	ALLOW reverse arguments with C-Br bond stronger		
	IGNORE Explanations in terms of electronegativity or bond		
	polarity or activation energy or shielding even if incorrect		

Question	Acceptable Answers		Reject	Mark
Number				
3	(Boiling) absorbs heat (allow			1
(c)(i)	energy)/latent heat (of			
	vaporization)/enthalpy of			
	vaporization from the			
	surroundings/endothermic			
	surroundings/ endothermie.			
	If bonds are montioned they			
	must be intermolocular			
Question	Acceptable Answers	Re	eject	Mark
Number			-	
3	Any two from			2
(c)(ii)	-			
(-/(/	Not flammable	Do	pes not produce CFCs	

Number			
3	Any two from		2
(c)(ii)			
	Not flammable	Does not produce CFCs	
	Not toxic	Gas/solid	
	Unreactive/inert/non-corrosive	,	
	(only one of these can score)	stable	
	(easily) compressible		
	does not harm the ozone laver		
	Boiling temperature below		
	target temperature		
	ALLOW low boiling		
	temperature		
	high heat of vaporization		
	high gas density		
	high critical temperature		
	ICNOPE Non-polluting/		
	onvironmentally friendly/		
	choon (oosily monufactured)		
	and the store (and the contain		
	(take up little appendix low)		
	/take up little space/low		
	meiting point/endothermic/		
	harmful		

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	Reagent: chlorine/ Cl ₂ (1) Condition: uv/ sunlight (1) ALLOW light Mark independently Ignore reference to temp and pressure if given with uv light. If answers reversed/both on one line 1 out of 2	Cl Just "heat"	2

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	(free) radical (1)		2
	Substitution (1)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	Hydrogen chloride / HCl	Hydrochloric acid Chlorine HCl (aq) Cl ₂	1

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	Curly (not half headed) arrow from C=C to H (1) Curly arrow from bond in H-Cl to Cl (1) Curly arrow from Cl ⁻ to C ⁺ (1) H H H H H H H H H H H H H		3
	Partial charges on HCl not required Lone pairs on Cl ⁻ not required It should be clear if arrows are to/ from a bond or an atom, but give allowance for precise position Correct intermediate without arrows (1)	Attack by Cl ^{δ-} or Cl∙ loses 3 rd mark only	
	Correct addition of HBr max 2 Correct addition of HCl to propene max 2 Max 2 for addition of Cl_2 instead of HCl (forming 1,2 - dichloroethane) Max 1 for addition of Cl_2 instead of HCl forming chloroethane	Correct free radical mechanism from ethane and chlorine scores 0	

Question Number	Acceptable Answers	Reject	Mark
4(c)	Higher atom economy from ethene /by electrophilic addition Higher yield from ethene Both correct for (1) From ethene only one product / all atoms are used making product /no unwanted products (1)		3
	For ethene yield high as no di-, tri- etc substituted products form /only one product / no by-products OR no side reactions occur OR no C_4 compounds can form (1) [Or reverse argument]	Not much product is lost	

Question Number	Acceptable Answers	Reject	Mark
4(d)(i)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} Counter cou		2

Question Number	Acceptable Answers	Reject	Mark
4d)(ii)	CI H CI H -C-C-C-C-C- -C-C-C-C- H H H H ALLOW H and Cl below C chain; Cl on C2 and C3 or C1 and C4; formula above with brackets at each end and n outside end bracket End bonds should be shown, but don't penalise if these don't go through brackets H atoms should be shown	Formula not displayed One monomer unit shown in bracket with the number 2 outside bracket Cl on C1 and C2 Cl onC3 and C4	1

Question Number	Acceptable Answers	Reject	Mark
4(d)(iii)	 QWC Any 2 Answers could consider the following factors: energy for manufacture availability / abundance of raw materials lifetime of product/ how often will it need to be replaced /metal rusts/plastic more easily punctured etc ease of recycling /steel an excellent recyclable material consequences of disposal / is it biodegradable? Is it from a non-renewable resource? Atom economy in manufacture Allow answers comparing specific properties (if correct) illustrating the relevant property Examples PVC will last longer than iron due to lack of corrosion (1) PVC comes from oil which is non-renewable (1) PVC and metals come from non-renewable sources (1) Credit any two valid points 	Ignore if other answers given: cost PVC biodegradable its carbon footprint Is it environmentally friendly? Pollution comments without reference to resources needed to clean up	2