Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i}$	sulfuric acid / fuming $\mathrm{H}_{2} \mathrm{SO}_{4} /$ $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	Conc. (for fuming) Fuming dilute sulfuric acid	$\mathbf{1}$
Just sulfuric acid			
Just $\mathrm{H}_{2} \mathrm{SO}_{4}$			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i)}$	Sulfur is $\delta+$ and on at least one oxygen δ -		
(1)	Full + or - charge(s) $1 / 3-$ on each cxygen	$\mathbf{2}$	
	Oxygen is (much) more electronegative than sulfur ALLOW Oxygen is very electronegative	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ $\mathbf{(a) (i i i)}$	The sulfur trioxide can accept a pair of electrons	An electron	$\mathbf{1}$
	OR (Three oxygen atoms so) sulfur has a large δ or OR	π bonds allow S-O bonds to be polarized more easily ALLOW Electron- deficient sulfur	

Marks for (b)(i) and (b)(ii) can be awarded from either of the two annotated diagrams on item

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	First curly arrow as shown to start inside the (1) hexagon to the S atom Second curly arrow from bond to O (i.e. not from (1) the S atom itself) ALLOW Second curly arrow to any of the three O atoms in SO IGNORE A full + charge on S	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 1 \\ & (\mathrm{~b})(\mathrm{ii}) \end{aligned}$	Curly arrow as shown from the $\mathrm{C}-\mathrm{H}$ bond to reform the ring in first line, not from the H atom in this bond Intermediate anion formed in first line (H^{+}does not have to be shown) Last line with curly arrow and correct structure of benzenesulfonic acid ALLOW Use of $\mathrm{H}_{2} \mathrm{SO}_{4}$ for H^{+}with HSO_{4}^{-}as other product in final step The marks for (b)(ii) may be awarded from annotations on the right hand structure given in question in (b)(i) If contradictory arrows drawn on structure in question (b)(ii), then penalise any such inconsistency The three marks for the two steps in (b)(ii) can be shown in one step / diagram / structure ALLOW - $\mathrm{SO}_{3} \mathrm{H}$ undisplayed	Use of $\mathrm{H}_{2} \mathrm{O}$ for H^{+} $-\mathrm{HSO}_{3}$	3

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	$\begin{equation*} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}+3 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ ALLOW Charges on $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-} \mathrm{Na}^{+}$ $\begin{equation*} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaCl} \tag{1} \end{equation*}$ ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Cl}^{-}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	Charges on $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i)}$	Any two from: (Both) products useful / both are useful / propanone is useful So less waste / high(er) atom economy Fewer steps / one step / does not require many steps (in Hock synthesis)	Cheaper	$\mathbf{2}$
	Continuous rather than a batch process IGNORE "Only one waste product in Hock" Comments relating to hazardousness of reactants / safety / energy requirements References to yield References to efficiency References to rate	(2)	

Question Number	Acceptable Answers		Reject	Mark
2(a)	2,6-dimethylhept-5-enal	(2)		2
	Either part scores	(1)		
	e.	2,6-dimethyl	(1)	
hept-5-enal	(1)			
	IGNORE missing/misplaced/misused hyphens or commas			
	ALLOW ene for en ALLOW methy or methly for methyl			

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	$\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$ OR $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$ OR $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{HCH}_{2} \mathrm{OH}$ ALLOW displayed or skeletal formulae $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ name (oxidation state must be correct if given (VI)) This is a stand alone mark $\mathrm{H}_{2} \mathrm{SO}_{4}$ / name (ignore any references to concentration) ALLOW H ${ }^{+}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ 'Acidified dichromate'	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$ $\mathrm{KMnO}_{4}(0)$ for last 2 marks $\mathrm{HCl}(0)$ for $3^{\text {rd }}$ mark	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i) ~}$	(Steam) distil off melonal (as it forms) Allow add a limited amount of oxidizing (1) agent/excess alcohol/excess X To prevent further oxidation/To prevent carboxylic acid forming Stand alone marks	(1)	

Question	Acceptable Answers				Reject	Mark
2(c)	Wavenumber range $/ \mathrm{cm}^{-1}$ Bond Functio group present in melonal			(1) (1)	Just carbonyl Just $\mathrm{C}=\mathrm{C}$ in $3^{\text {rd }}$ column	2
	$\begin{gathered} 1740-1720 \\ \text { OR } \\ 2900-2820 \\ / \\ 2775-2700 \\ \hline \end{gathered}$	$\mathrm{C}=\mathrm{O}$ $\mathrm{C}-$	(saturated) Aldehyde/CHO			
	$\begin{gathered} 1669-1645 \\ \text { OR } \\ 3095-3010 \end{gathered}$	$\mathrm{C}=\mathrm{C}$ C-	Alkene ALLOW 'carbon to carbon double bond'			
	ALLOW any single value or range within the ranges above ALLOW one mark if both wavenumber ranges and bond columns are correct but neither bond identified					

Question Number	Acceptable Answers	Reject	Mark
2(d)	$\begin{align*} & \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}^{+} / \mathrm{CH}_{3} \mathrm{CHCHO}^{+} \tag{1}\\ & \mathrm{C}_{6} \mathrm{H}_{11}^{+} \end{align*}$ [ALLOW Structural, skeletal or displayed formulae] Penalise omission of + charge once only ALLOW any order of atoms if correct totals.	$\begin{aligned} & \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+} \\ & \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}^{+} \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
2(e)(i)		Circle around any other additional atoms	1

Question Number	Acceptable Answers	Reject	Mark
2(e)(ii)		Circle around any other additional atoms	1

Question Number	Acceptable Answers	Reject	Mark
2(f)(i)	Arrow from anywhere on the cyanide ion to the carbon of the carbonyl. Arrow to the O must come from the carbonyl bond Formula of intermediate Arrow from oxygen to H and from $\mathrm{H}-\mathrm{CN}$ bond to CN ALLOW arrow from O^{-}to H^{+}or to $\mathrm{H}_{2} \mathrm{O}$	Starting from HCN/ $C N{ }^{\partial-}$ Single headed arrows	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Addition (1) (a)(i) Nucleophilic (1) Either order	SN1 SN2	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(ii)	Hydrogen cyanide / HCN (1) Potassium cyanide / KCN/ sodium cyanide/ NaCN (1) OR Potassium cyanide / KCN (1) With hydrochloric acid / sulfuric acid (to generate HCN) (1) Ignore concentration of acids Mark for HCl etc is consequential on KCN ORJ ust CN		
Hydrogen cyanide / HCN (1) With sodium hydroxide / other base (to make cyanide ions) (1) Mark for NaOH etc is consequential on HCN	Just OH ${ }^{-}$	any weak acid	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 3 \\ & (a)(i i i) \end{aligned}$	 (1) (1) (1) Both arrows in first step of mechanism above correctly drawn (1) Correct intermediate with charge Both arrows in second step with correct organic product (CN^{-}is not required) (1) Use of HCN for first step max 2 marks Allow omission of lone pair on CN^{-}and O^{-} Allow curly arrow from negative charge or elsewhere on cyanide ion Allow arrow from O^{-}in $2^{\text {nd }}$ step to H^{+}(no other product or only one product) or $\mathrm{H}_{2} \mathrm{O}$ (with OH^{-} formed)	$\mathrm{C}=\mathrm{O}$ breaking before attack by CN Arrows from atoms when they should be from bonds and vice versa	3

Question Number	Acceptable Answers	Reject	Mark
*3(a) $\mathbf{(i v)}$	Attack (by nucleophile on the C) is from both sides (equally)/ above and below (at the planar reaction site in the aldehyde group) (1)	Attack on intermediate in reaction mechanism is from both sides Attack from both ends/two angles	$\mathbf{2}$
	So a mixture of two enantiomers/(optical) isomers in equal proportions forms OR racemic mixture forms (1) First and second marks are independent	Just "both enantiomers form"	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b)}$	Any named (aqueous) strong acid or its formula.	Water	
H^{+}	$\mathbf{1}$		
	Allow (aqueous) sodium hydroxide followed by dichromate + sulfuric acid named acid or formula Ignore references to concentration	Carboxylic acids	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	2-hydroxypropanoic acid	2- hydroxylpropanoic acid 2- hydroxopropanoic acid	$\mathbf{1}$
		2-hydroxypropan- 1-oic acid	

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 3 \\ (c)(i i) \end{array}$	 OR All bonds in ester link must be shown More than 2 units may be shown but structure shown should be a repeat unit Ignore brackets/n	A dimer Missing H atoms Missing bonds at ends	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(iii)	Ester (link/bond) in PLA can be hydrolysed/broken down (by enzymes) OR Ester (link/bond) in PLA can be broken down	Just "it can be hydrolysed"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Ethene is (from crude oil so) non-renewable// (c)(iv) milk is from a renewable source/ energy required to make ethene is high/ high temperatures needed to make ethene/ energy requirements for process from sour milk less/ process from milk doesn't use toxic chemicals / process from milk doesn't use cyanide	Milk is more readily available Greater atom economy	$\mathbf{1}$
Allow other chemicals process from ethene requires many steps so expensive/so loss of material occurs at each needed in process from milk	Just "process from ethene requires many steps"		
Igore reagents needed Inore references to cost, unless answer gives a reason for lower cost.	Just "cheaper"		

