Question Number	Acceptable Answers	Reject	Mark
1(a)(i	sulfuric acid / fuming H_2SO_4 / oleum / $H_2S_2O_7$	Conc. (for fuming) Fuming dilute sulfuric acid Just sulfuric acid Just H ₂ SO ₄	1

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	Sulfur is δ+ and on at least one oxygen δ- (1)	Full + or – charge(s)	2
	Oxygen is (much) more electronegative than sulfur ALLOW Oxygen is very electronegative (1)	1/3 – on each oxygen	

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iii)	The sulfur trioxide can accept a pair of electrons	An electron	1
	OR		
	(Three oxygen atoms so) sulfur has a large δ or partial / slight positive charge		
	OR		
	π bonds allow S–O bonds to be polarized more easily		
	ALLOW Electron-deficient sulfur		

Marks for (b)(i) and (b)(ii) can be awarded from either of the two annotated diagrams on item

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	First curly arrow as shown to start inside the hexagon to the S atom (1) Second curly arrow from bond to O (i.e. not from the S atom itself) (1) ALLOW Second curly arrow to any of the three O atoms in SO ₃ IGNORE A full + charge on S		2

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)			3
	Curly arrow as shown from the C-H bond to reform the ring in first line, not from the H atom in this bond (1)		
	Intermediate anion formed in first line (H ⁺ does not have to be shown) (1)	Use of H_2O for H^+	
	Last line with curly arrow and correct structure of benzenesulfonic acid(1)		
	ALLOW Use of H_2SO_4 for H^+ with HSO_4^- as other product in final step		
	The marks for (b)(ii) may be awarded from annotations on the right hand structure given in question in (b)(i)		
	If contradictory arrows drawn on structure in question (b)(ii), then penalise any such inconsistency		
	The three marks for the two steps in (b)(ii) can be shown in one step / diagram / structure		
	ALLOW -SO ₃ H undisplayed	-HSO₃	

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	$C_6H_5SO_3H + 3NaOH \rightarrow C_6H_5ONa + Na_2SO_3 + 2H_2O$ (1)		2
	ALLOW Charges on C ₆ H₅O ⁻ Na ⁺	Charges on C ₆ H₅SO₃H	
	$C_6H_5ONa + HCI \rightarrow C_6H_5OH + NaCl$ (1)		
	ALLOW $C_6H_5O^-$ + HCI \rightarrow C_6H_5OH + CI ⁻		
	OR		
	$C_6H_5O^- + H^+ \rightarrow C_6H_5OH$		

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	Any two from:	Cheaper	2
	(Both) products useful / both are useful / propanone is useful		
	So less waste / high(er) atom economy		
	Fewer steps / one step / does not require many steps (in Hock synthesis)		
	Continuous rather than a batch process (2)		
	IGNORE		
	"Only one waste product in Hock" Comments relating to hazardousness of reactants /		
	safety / energy requirements		
	References to yield		
	References to efficiency		
	References to rate		

Question Number	Acceptable Answers		Reject	Mark
2(a)	2,6-dimethylhept-5-enal Either part scores e. 2,6-dimethyl hept-5-enal	(2) (1) (1) (1)		2
	IGNORE missing/misplaced/misused hyphens or commas ALLOW ene for en ALLOW methy or methly for methyl			

Question Number	Acceptable Answers		Reject	Mark
2(b)(i)	$CH_{3}C(CH_{3}) = CHCH_{2}CH_{2}CH(CH_{3})CH_{2}OH$ OR $CH_{3}C(CH_{3})CHCH_{2}CH_{2}CH(CH_{3})CH_{2}OH$ OR $CH_{3}C(CH_{3}) = CHCH_{2}CH_{2}C (CH_{3}) HCH_{2}OH$ $ALLOW displayed or skeletal formulae$	(1)	C ₉ H ₁₈ O	3
	K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇ /name (oxidation state must be correct if given (VI)) This is a stand alone mark	(1)	KMnO₄ (0) for last 2 marks HCl (0) for 3 rd mark	
	H_2SO_4 /name (ignore any references to concentration)	(1)		
	ALLOW H ⁺ and $Cr_2O_7^{2-}$	(2)		
	'Acidified dichromate'	(1)		

Question Number	Acceptable Answers		Reject	Mark
2(b)(ii)	 (Steam) distil off melonal (as it forms) Allow add a limited amount of oxidizing agent/excess alcohol/excess X To prevent further oxidation/To prevent carboxylic acid forming Stand alone marks 	(1) (1)		2

Question Number	Acceptable Answ	wers			Reject	Mark
2 (c)]		2
	Wavenumber range / cm ⁻¹	Bond	Functio group present in melonal			
	1740 – 1720 OR 2900 – 2820 / 2775 – 2700	C=0 C-	(saturated) Aldehyde/CHO	(1)	Just carbonyl	
	1669 – 1645 OR 3095 - 3010	C=C C-	Alkene ALLOW 'carbon to carbon double bond'	(1)	Just C=C in 3 rd column	
	ranges above	rk if bot d colum	e or range within h wavenumber ins are correct bi			

Question Number	Acceptable Answers		Reject	Mark
2 (d)		(1) (1)	$C_{4}H_{9}^{+}$ $C_{5}H_{7}O^{+}$	2

Question Number	Acceptable Answers	Reject	Mark
2(e)(i)	$H \rightarrow H \rightarrow$	Circle around any other additional atoms	1

Question Number	Acceptable Answers	Reject	Mark
2(e)(ii)		Circle around any other additional atoms	1

Question Number	Acceptable Answers	Reject	Mark
2 (f)(i)	$ \begin{array}{c} H \\ R \\ R \\ \hline () \\ () \\ R \\ \hline () \\ R \\ \hline () \\ R \\ \hline () \\ () \\ R \\ \hline () \\ R \\ \hline () \\ () \\ R \\ \hline () \\ () \\ () \\ () \\ () \\ () \\ () \\ $		3
	Arrow from anywhere on the cyanide ion to the carbon of the carbonyl. Arrow to the O must come from the carbonyl bond(1)Formula of intermediate(1)	Starting from HCN/ CN ^{∂-}	
	Arrow from oxygen to H and from H-CN bond to CN(1)ALLOW arrow from O^- to H^+ or to H_2O	Single headed arrows	

Question	Acceptable Answers	Reject	Mark
Number 2(f)(ii)	These marks are stand alone EITHER No		3
	First mark: Reaction site/carbonyl/aldehyde/molecule is planar (1)	attack on a (planar) carbocation OR attack on a (planar) intermediate OR S_N1 OR S_N2 OR "planar product"	
	Second mark: Attack (equally likely) from both sides OR Attack (equally likely) from above and below (1)	Any/either direction or any/either angle	
	Third mark: (gives) racemic mixture/(gives) equal amounts of each isomer/(gives) equal amounts of each enantiomer(1)OR Yes Melonal has a chiral carbon atom(1)		
	Correct identification of chiral centre (1) This chiral centre unaffected by reaction (1)		

Question Number	Acceptable Answers	Reject	Mark
3	Addition (1)	SN1	2
(a)(i)	Nucleophilic (1)	SN2	
	Either order		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	Hydrogen cyanide / HCN (1) Potassium cyanide / KCN/ sodium cyanide/ NaCN (1)	Just CN ⁻	2
	OR		
	Potassium cyanide / KCN (1) With hydrochloric acid / sulfuric acid (to generate HCN) (1)	Just CN ⁻ Just acid/ H ⁺ any weak acid	
	Ignore concentration of acids Mark for HCI etc is consequential on KCN		
	OR		
	Hydrogen cyanide / HCN (1) With sodium hydroxide / other base (to make cyanide ions) (1) Mark for NaOH etc is consequential on HCN	Just OH ⁻	

Question Number	Acceptable Answers	Reject	Mark
Number 3 (a) (iii)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & \\$	C=O breaking before attack by CN ⁻ Arrows from atoms when they should be from bonds and vice versa	3

Question Number	Acceptable Answers	Reject	Mark
*3(a) (iv)	Attack (by nucleophile on the C) is from both sides (equally)/ above and below (at the planar reaction site in the aldehyde group) (1)	Attack on intermediate in reaction mechanism is from both sides Attack from both ends/two angles	2
	So a mixture of two enantiomers/(optical)isomers in equal proportions forms OR racemic mixture forms (1) First and second marks are independent	Just "both enantiomers form"	

Question Number	Acceptable Answers	Reject	Mark
3 (b)	Any named (aqueous) strong acid or its formula.	Water H⁺	1
	Allow (aqueous) sodium hydroxide followed by named acid or formula Ignore references to concentration	Potassium dichromate + sulfuric acid Carboxylic acids	

Question Number	Acceptable Answers	Reject	Mark
3 (c)(i)	2-hydroxypropanoic acid	2- hydroxylpropanoic acid 2- hydroxopropanoic acid 2-hydroxypropan- 1-oic acid	1

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	$\begin{array}{c} CH_3 & CH_3 \\ -C-C-O-C-C-O- \\ H & H \\ H & O \\ \end{array}$ $\begin{array}{c} CH_3 & CH_3 \\ -O-C-C-C-O-C-C- \\ H \\ H \\ \end{array}$ $\begin{array}{c} CH_3 & CH_3 \\ -O-C-C-C-O-C-C- \\ H \\ H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$ $\begin{array}{c} CH_3 & CH_3 \\ -O-C-C-C-O-C-C- \\ H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$ $\begin{array}{c} CH_3 & CH_3 \\ -O-C-C-C-O-C-C- \\ H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$ $\begin{array}{c} O \\ \end{array}$ $\begin{array}{c} CH_3 \\ -O-C-C-C-O-C-C- \\ H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$ $\begin{array}{c} O \\ \end{array}$ $\begin{array}{c} CH_3 \\ \end{array}$ $\begin{array}{c} CH_3 \\ H \\ \end{array}$ $\begin{array}{c} CH_3 \\ \end{array}$ $\begin{array}{c} CH_3 \\ H \\ \end{array}$	A dimer Missing H atoms Missing bonds at ends	1

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iii)	Ester (link/bond) in PLA can be hydrolysed/broken down (by enzymes) OR Ester (link/bond) in PLA can be broken down	Just "it can be hydrolysed"	1

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iv)	Ethene is (from crude oil so) non-renewable/ milk is from a renewable source/ energy required to make ethene is high / high temperatures needed to make ethene/ energy requirements for process from sour milk less / process from milk doesn't use toxic chemicals / process from milk doesn't use cyanide	Milk is more readily available Greater atom economy No other chemicals needed in process from milk	1
	Allow process from ethene requires many steps so expensive/ so loss of material occurs at each step / so more reagents needed Ignore references to cost, unless answer gives a reason for lower cost.	Just "process from ethene requires many steps" Just "cheaper"	