Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(i)	Conc. Nitric acid (1) Conc. Sulfuric acid (1) Allow correct formulae Ignore state symbols Sulfuric acid and nitric acid with no mention of concentrated scores (1)	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	Pear shaped/round bottomed flask \& heat source (1) Allow vertical arrow with or without the word heat Allow water bath as a heat source Liebig condenser, shown vertically (1) (Water) flow shown correctly into a jacket (1)	Conical flask in diagram or label	$\mathbf{3}$
Ignore thermometers unless stoppered Penalise (one for each): Stopper/sealed Gaps between flask and condenser Condenser inner tube extends into liquid in flask			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(iii)	Heat Speed up reaction / to overcome the activation energy / provide energy to break bonds / because activation energy for the reaction is high (1)	Just to provide energy for the reaction to start	$\mathbf{2}$
	Under reflux Prevent escape of reactants / products Or As they may be flammable / harmful / volatile (1)	Just to increase the yield/make reaction go to completion	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$		
(a)(iv)	$\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$		$\mathbf{1}$
	Allow displayed or skeletal formulae		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(v)	Reduction (1) Allow redox Tin / iron / zinc and (conc./dilute) hydrochloric acid (1) Accept correct names or formulae for both alternatives Ignore references to tin as a catalyst Ignore conditions Allow NaBH_{4} in alkali (Pd catalyst)	Addition of NaOH unless clearly after the reduction Hydrogen gas and nickel (catalyst) LiAlH	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 1 \\ & (b)(i) \end{aligned}$	Moles of 2-hydroxy benzoic acid $=9.4 / 138$ (1) $(=0.0681)$ So theoretical yield of aspirin $\begin{aligned} & =0.0681 \times 180(\mathbf{1}) \\ & =12.26 \mathrm{~g} \end{aligned}$ $\%$ yield $=100 \times 7.77 / 12.26=63.4 \%(1)$ Or Moles of 2-hydroxy benzoic acid $=9.4 / 138$ (1) $(=0.0681)$ Moles of aspirin $=7.77 / 180$ (1) $(=0.0432)$ $\%$ yield $=100 \times 0.0432 / 0.0681=63.4 / 63 \%$ (1) Correct answer with no working 3 marks Allow 1 max. if Mr values are transposed 108\%	$\begin{aligned} & 100 \times 7.77 / 9.40 \\ & =82.7 \% \end{aligned}$	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ *(b)(ii)	Dissolve/add to impure solid in min. volume / amount (1) of hot solvent / water (1) (Filter whilst hot) Allow to cool and filter off product / (re)crystallize and filter off product (1) Wash with cold / small amount of solvent / water (then dry) (1)	Just `small/little amount of water'	$\mathbf{4}$
other than water -			
penalise once			
\hline\end{array}\right.$			
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1}$ (b)(iii)	It reduces yield as some product remains in solution Allow stated and explained errors due to transfer e.g. left on filter paper	Just 'transfer errors'	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1}$ $\mathbf{(c) (i)}$	$\mathrm{CH}_{3} \mathrm{COCl} /\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} /$ ethanoyl chloride / ethanoic anhydride If both name and formula are given then both must be correct Allow acetyl chloride / acetic anhydride Ignore any additional information	Ethanoic acid	$\mathbf{1}$
	Allow displayed formulae		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1}$ $\mathbf{(c) (i i)}$	(Lessen) risk of overdose / as paracetamol is toxic in larger doses/ as paracetamol is harmful in larger doses / reduce risk of taking medication over a longer time period than necessary / reduce risk of addiction	$\mathbf{1}$	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1}$ $\mathbf{(c) (i i i) ~}$	Net forces between paracetamol and water are less than the forces between water and water and / or paracetamol and paracetamol Allow benzene / ring doesn't interact with water Allow benzene ring is hydrophobic / non polar / only forms London forces / can't form hydrogen bonds	Just paracetamol / benzene ring is large / steric hindrance	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{2 (a) (i)}$	C 60/12 = 5		$\mathbf{1}$
	H $8 / 1=8$		
	O 32/16 $=2$ ALLOW 1 mol $=100 \mathrm{~g}$ So $60 \% \mathrm{C}=\mathrm{C}_{5}$, etc		
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
2(a)(ii)	$\mathbf{C}=\mathbf{C}$ Test : add bromine water/ $\mathrm{Br}_{2}(\mathrm{aq})$ Result: From yellow/brown/redbrown/orange to colourless/decolorises OR Test : add (acidified) potassium manganate((VII)) (solution) (1) Result: goes from pink/purple to colourless/brown Test : add alkaline potassium manganate((VII)) (solution) (1) Result: goes green COOH: Test : add $\mathrm{NaHCO} 3 / \mathrm{Na}_{2} \mathrm{CO}_{3} /$ sodium carbpnate (solution) Result: Fizzes/bubbles/large volume neutralized	Bromine $/ \mathrm{Br}_{2} / \mathrm{Br}_{2}(\mathrm{I})$ clear for colourless clear for colourless $\mathrm{PCl}_{5} / \mathrm{LiAlH}_{4}$ as test $\mathrm{NaOH} / \mathrm{NaOH}(\mathrm{aq})$ colourless gas evolved	4

Question Number		Reject	Mark
2(b)(i)	Explanation of precedence/priority in terms of atomic numbers/masses of the attached groups	Both $\mathrm{CH}_{3} /$ methyl groups on the same side so Z $(0 / 2)$	$\mathbf{2}$
	Highest-precedent/priority groups on each carbon are on opposite sides of the molecule	(1)	
E-/entgegen Mark independently	(1)		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
2(b)(ii)	45 $\mathrm{COOH}^{+} / \mathrm{CO}_{2} \mathrm{H}^{+}$ (1)		
	55 $\mathrm{C}_{4} \mathrm{H}_{7}+$ OR^{+} $\mathrm{C}_{3} \mathrm{OH}_{3}{ }^{+}$ $\mathrm{ALLOW}^{\text {Structural/displayed formulae of ions }}$ Absence of + charge (1 max)		$\mathbf{2}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{2 (b) (\text { iii) }}$	If they say yes (0) (No) (Cleavage of the C-COOH bond in) both compounds gives fragment(s) of the same mass OR Both give the same peak(s)/fragment(s) Both give $\mathrm{CO}_{2} \mathrm{H}^{+} / \mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}$fragments	'No' on its own	
The mark can be scored by referring to just one of the fragments/peaks/masses.	$\mathbf{1}$		
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
*2(c)(i)	C is $\mathrm{CH}_{3} \mathrm{CHO}$ (alone) D is $\mathrm{CH}_{3} \mathrm{COCOOH}$ (alone) so tiglic acid must be B tiglic acid mark can only be awarded if correct structures of either \mathbf{C} or \mathbf{D} are given. Any one of the following C must be an aldehyde D is a ketone Mention that $\mathrm{CH}_{3} \mathrm{CO}$ present in either/both compounds (because of formation of iodoform) If one or both of the structures are incorrect any of the last 3 marks can be awarded $\max 5$ If C and D are fully correct, but the wrong way round max 5	$\mathrm{CH}_{3} \mathrm{COH} 1$ max	6
Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	Doesn't distinguish E - isomer from Z isomer/geometric isomers (so no) OR Doesn't distinguish which sides of $\mathrm{C}=\mathrm{C}$ functional groups are on	Just isomers/ stereoisomers/ enatiomers	1
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
2(d)(i)	$\mathrm{CH}_{3} \mathrm{CHO}$	$\mathrm{CH}_{3} \mathrm{COH}$	4
	ACCEPT displayed or skeletal		
	Step 1		
	(heat)using acidified potassium dichromate/or $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Manganate $\mathrm{VII} / \mathrm{KMnO}_{4}$	
	distil (product as formed) conditional on dichromate	Reflux	
	Step 2		
	HCN with KCN	HCN alone	
	OR		
	KCN with H^{+}/acid		
	OR		
	KCN with (cold) $\mathrm{NaOH}(\mathrm{aq}) /$ alkali (1)		
	ALLOW HCN with $\mathrm{NaOH} /$ alkali		
	For step 2 Ignore conditions e.g. any references to heat		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
2(d)(ii)	Nucleophilic addition	Nutrophilic addition	$\mathbf{1}$
	Any recognisable spelling of 'philic' and addition, either order	Any other or additional words	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
*2(d)(iii) QWC	Ethanal is planar (at the reaction site)	Intermediate is planar Square planar	$\mathbf{2}$
	OR Ethanal is a planar molecule (1) Attack (from CN to give the cyanohydrin) is (equally likely) from either side/above or below/from both sides (of the molecule) (so a racemic mixture is formed) Mark independently	Can attack carbocation from either side/any reference to SN1/SN2	(1)
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
2(d)(iv)	Receptors for the compound in the body are often stereospecific so only one stereoisomer is pharmacologically active OR Body recognises one (stereo)isomer ALLOW Only one (stereo)isomer is active OR One/the other isomer may be toxic/dangerous/harmful OR One isomer destroys body cells OR (Different) isomers have different biological/pharmacological/biochemical properties	$\mathbf{1}$	

