1. (a) (i) $-* \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$ (1)
(ii) (the three) OH groups (1)
allow adrenalin to form more hydrogen bonds with water (than does benzedrine) (1)
(b) (i)

Can use R in place of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ - in both (i) and (ii)
(ii)

(iii)

substitution(s) in ring at any position(s) (1)
production of amide (1)
(d)

(e) (i) $\quad\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{NH}_{2}\right)^{+}$(1)
(ii) $\left(\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{3}\right)^{+} /\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right)^{+}$
max 1 for (e) if no charges shown
must show some structure in answers ie. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}(0) \quad 1$
2. (a) (i) The enthalpy / heat / heat energy change / released when 1 mol of benzene is formed (1) from its elements (1) under standard conditions
(ii) The enthalpy / heat / heat energy change when 1 mol of benzene burns (1) in excess oxygen / burns to form carbon dioxide plus water / is completely oxidized under standard conditions (1)
The second mark is not awarded if standard conditions are not mentioned in part (i) or (ii).
(b)

For correct cycle shown (1) or equivalent equations
$\Delta \mathrm{H} 1=6 \times(-394)+3 \times(-286)=-3222 \mathrm{~kJ}$ (1) for either showing calculation or answer
$\Delta \mathrm{Hf}=-3222-(-3273)=+51 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1) 3
(c) Benzene has π electrons delocalised (1) Therefore bond energy NOT that of C-C or $\mathrm{C}=\mathrm{C}$

(d) (i) rate $=$ k[benzene][bromine] 1
(ii) rate would be decreased (1)
E_{a} of rate determining step (or the idea of it) would be increased (1) 2
3. (a) $\mathrm{CH}_{3} \mathrm{CO}^{+}(\mathbf{1})$

Candidate may not identify electophile but may score this mark if they use the correct electrophile in the mechanism

$$
\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}(\mathbf{1})
$$

(1)

(1)

In the mechanism the electrophile can be shown as
$\delta+$ $\delta-$

$$
\mathrm{CH}_{3} \mathrm{CO}-\mathrm{Cl}^{-} \rightarrow \mathrm{AlCl}_{3}
$$

(b) Notes: The arrow for the first mark should start inside the ring and go to the carbon of the CO group.
The arrow for the last mark should start on the bond and finish inside the ring.

(1)

(c) There are several routes through this; all can score full marks

4. (a) $2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{l}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6+}{ }^{2-}+2 \mathrm{I}^{-}$or clearly stated (1)
amount of thio $=26.8 \times 0.1 / 1000=2.68 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
ratio of copper to thio is $1: 1$ (1)
total amount of copper $=2.68 \times 10^{-3} \mathrm{~mol} \times 10=2.68 \times 10^{-2} \mathrm{~mol}(\mathbf{1})$
mass of copper $=2.68 \times 10^{-2} \mathrm{~mol} \times 63.5 \mathrm{~g} \mathrm{~mol}^{-1}=1.70 \mathrm{~g} \mathbf{(1)}$
purity $=1.70 \times 100 / 1.74=97.8 / 97.7 \%(1)$
allow 2 to 4 sig figs in final answer mark consequentially
(b) The increase in successive ionisation energies is similar (1) compensated for by bond formation or hydration enthalpy or energy or lattice enthalpy (1)
catalysis involves metal ion moving from one oxidation state to another (1) and back (1)
(c) (i) Sodium nitrite $+\mathrm{aq} /$ conc / dilute $\mathrm{HCl} /$ hydrochloric acid (1) any temperature between 0 and $10^{\circ} \mathrm{C}$ or a range between $0 \&$ $10^{\circ} \mathrm{C}$ (1)
(ii) If too cold reaction too slow (1)
if too warm product or nitrous acid decomposes / products would be phenol and nitrogen (1)
(iii)

3 structures (2)
2 structures (1)
Balance (1)
It is not necessary to show the full structure for the diazo compound e.g $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+}$is acceptable.

Conditions - phenol in alkali (1) yellow / orange / red ppt (1)
(d)

6

Condition mark depends on reasonable reagents If give alternative route then - 1 for each error Name of nitrobenzene acceptable
5. (a) (i) Aluminium chloride or AICl_{3} or iron(III) chloride or FeCl_{3} (1) catalyst (1)

(b) Esterification / condensation (1)

(1)
(c)
(i)

Three correct 2 marks. 2 correct 1 mark
(ii)

(d) Benzene diazonium chloride (solution) / ion shown or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{+} \equiv \mathrm{N}$ (1)

Sodium nitrite and hydrochloric acid (1)
$0-10^{\circ} \mathrm{C}$ (1)
alkaline solution (of phenol) (1)
6. (a)

Fully displayed showing all C, H and circle or kekulé structure.
(b) Understanding of 'electrophile' - positive/electron deficient entity ACCEPT Species that accepts a lone pair of electrons (1)
Understanding of 'substitution'- exchange/replace for another entity / atom / hydrogen (1)
(c)

Must contain a hexagon (with ring or kekulé inside)
Bonds must go from ring to O of OCH_{3}, and to N of NO_{2}
(d) $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OBr} \quad$)
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{OBr}_{2}$) Any two
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OBr}_{3}$)
HBr)

$$
2
$$

(e) (i) Methoxybenzenesulph/fonic acid 1
(ii) Detergents/drugs/dyes 1
(f) (i) D hydrogen / H_{2} (1)

E (Raney) nickel / nickle / Ni /Platinum /Pt (1) 2
(ii) Addition (1)

Reduction (1)
(g) (i) Petroleum/crude oil/coal 1
(ii) Not carcinogenic / (cumulative) poison / toxic use of benzene in schools is illegal
7. (a) (i) Conc. sulphuric acid(1)

Conc. nitric acid (1)
[Conc. must be stated, or implied, for both acids]
(ii) $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}$(1)

> Can be shown in two stages

Or
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}$(1)

(1) for intermediate
(1)

(1)

I.e. curved arrow from benzene ring of electrons towards N in $\mathrm{NO}_{2}{ }^{+}$ ion (1)
Intermediate correctly drawn, including positive charge (1)
Curved arrow from C-H bond back into benzene ring (1)
(iii) Electrophilic substitution
(b)

(1)

(1)

(1)

Vertical/right hand substituents must be shown with C to N bond
[Mark consequentially on structural formula given for
"nitrobenzene" in (a)(ii)]
(c) Tin / iron and concentrated hydrochloric acid/conc. HCl (1) Heat (under reflux) (1)
(d) (i)

Allow:

(ii) - Dissolve in minimum volume (1)

- Of boiling/hot solvent (or any specified solvent other than water)
(1)
- Filter through a heated funnel (1)
- Cool or leave to crystallise (1)
- Filter under suction/filter using Buchner funnel (1)
- Wash crystals with cold solvent (1)

NB If no solvent used, no marks available at all in part (d)(ii)
8. (a) (i) It is non-superimposable on mirror image/ it has a single asymmetric carbon atom
(ii) rotates the plane (of polarisation) (1) of (plane-) polarised (monochromatic) light (1)
OR
Use a polarimeter (1)
rotates the plane (of polarisation) of the light (1)
(iii) product is an equimolar mixture/racemic mixture (1) so rotations cancel (1)
(b) $\quad-\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$on the amino group (1)
$-\mathrm{COO}^{-} \mathrm{Na}^{+}$on the carboxyl group (1)
(c) Zwifterion's structure (1)

There is ionic attraction between adjacent zwitterions (1)
(d) (i) (polymer formed by) elimination/ removal of a small molecule/ water (between two monomers)
(ii) any $\mathrm{CIOC}{ }^{* * *} \mathrm{COCl}$ (1) and $\mathrm{H}_{2} \mathrm{~N}^{*} \mathrm{CH}_{2} * \mathrm{NH}_{2}$ (1) 2
(iii) structure consequential on answer to (ii) showing amide link (1) and extension of the chain (1)
(iv)

Show 3 units (1) 2
9. (a) (i) $-240\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \quad 1$
(ii) $\quad-360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

Penalise incorrect units once only 1
(iii) Overlap of p-orbitals / π (system) (1)
(results in) delocalisation (1)
makes benzene (more) stable (by $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$) (1)
QWC*
(b) (i) $\mathrm{AlBr}_{3} / \mathrm{AIC1}_{3} / \mathrm{FeBr}_{3} / \mathrm{Fe}$

Formula must be correct; no names
(ii) Ignore curly arrows in this first step; mark species only (consistent with catalyst)

$$
\begin{equation*}
\mathrm{Br}_{2}+\mathrm{AlBr}_{3} \longrightarrow \stackrel{\oplus}{\mathrm{Br}}+\mathrm{AlBr}_{4} \stackrel{\ominus}{-} \tag{1}
\end{equation*}
$$

(1)
(1) structure
(1) arrow

Alternative way of showing part played by catalyst

Allow Kekulé intermediate

(iii) Electrophilic substitution 1
10. (a)

6

solution	X	Y
Sodium carbonate	fizzing/ effervescence/ bubbles (1)	no reaction / no bubbles (1)
Brady's reagent (2,4-dinitro phenyl hydrazine)	no change/ (stays) yellow/orange (1)	yellow /orange / orange-red or yellow-orange precipitate / (crystalline) solid (1)
Potassium dichromate + sulphuric acid	no change /(stays) orange (1)	Goes from orange to green/ brownish green/dull green (1)

(b) (i)
$-\mathrm{CO}_{2} \mathrm{CH}_{3} /-\mathrm{COOCH}_{3}$ on benzene ring

Do not allow if bond is obviously to wrong atom from benzene ring
(ii)

(iii) Undisplayed ester + unchanged - CHO (1) Correctly displayed for both groups (1)

(iv) sulphuric acid / hydrochloric acid
(v) Cl (and O) electronegative/electron withdrawing (1)
So $\mathrm{C}^{\delta+}$ is more/ very susceptible to nucleophilic attack/ more $\delta+/$ more electrophilic (1)
(c) (i) Electrophiles / electrophilic 1
(ii) $\mathrm{Br}^{\delta+} / \mathrm{Br}^{+} / \mathrm{Br}^{\delta+}-\mathrm{Br}^{\delta-} \quad 1$
(iii) Any substitution product with Br on benzene ring, and other 1 groups unchanged
(iv) lone pairs / electrons on phenolic group make ring more 1 negative than in benzene / lone pairs on $\mathbf{O H}$ donated to ring
11. (a) (i) $\begin{aligned} & \text { Fuming sulphuric acid / conc.sulphuric acid \& sulphur trioxide (1) } \\ & \text { Warm/(heat under) reflux/ hot/ high temperature (1) } \\ & \text { [fuming/conc. could appear as a condition] } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { (hencentrated under) reflux for several hours (1) }\end{aligned}$
(ii) $\mathrm{SO}_{3} / \mathrm{SO}_{3} \mathrm{H}^{+}$
(b) (i)

(ii) Substitution (1) Electrophile (1) 2

(iii) As oxygen lone pair is delocalised into ring / interacts with e^{-}in ring (1)

Benzene ring more attractive to electrophiles/greater electron
density/more nucleophilic (1)
(c) (i) Ethylbenzene/Phenylethane 1

(ii) Aluminium chloride reacts with chloroethane (1)
Inducing a positive charge on the ethyl group (1)
OR correct equation showing charges

$\mathrm{AlCl}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \rightarrow \mathrm{AlCl}_{4}+\mathrm{CH}_{3} \mathrm{CH}_{2}$ (2)
(d) (i) UV/sun light 1
(ii) 1,2,3,4,5,6-(hexa)chloro cyclohexane 1
12. (a) (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-} \mathrm{Na}^{+} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$

Do not allow covalent $\mathrm{O}-\mathrm{Na}$
(ii)

No other Isomer allowed
$O R$

IGNORE bond to H of OH
(iii)

No ring substitution allowed
(b) (i) $\mathrm{NaNO}_{2} /$ sodium nitrate / nitrate(III) (1)
conc aq / dil HCl / hydrochloric acid (1)
NOT HCI
Any temperature between $0-10{ }^{\circ} \mathrm{C}$
$O R$ range between $0-10^{\circ} \mathrm{C}$ (1)
NOT "less than $10^{\circ} \mathrm{C}$ "
IGNORE everything before phenylamine eg starting from benzene Conditions are dependent on correct or nearly correct reagents
(ii)

Correct diazonium ion (1) if $-{ }^{+} \mathrm{N}=\mathrm{N}$ the + must be on correct N
Correct equation (1)
IGNORE position of OH group
Can include Cl^{-}if equation is balanced
ALLOW $+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \rightarrow \ldots \ldots \ldots .+\mathrm{H}^{+}$
(iii) Alkaline / alkali / sodium hydroxide / NaOH / KOH / potassium hydroxide / sodium carbonate / sodium hydrogencarbonate IGNORE temperature
13. (a) (i) Chloromethane / bromomethane (1)

ALLOW methyl chloride
(anhydrous) aluminium chloride (1)
NOT iron (III) chloride / bromide

ALLOW formulae
2
(ii) Substitution (1)

Electrophilic (1)
In any order
-1 for each extra incorrect type eg addition as well as substitution
(iii) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{AlCl}_{4}^{-}$and $\mathrm{CH}_{3}{ }^{+} / \mathrm{CH}_{3}{ }^{+} \mathrm{AlCl}_{4}^{-}$(1)

ALLOW TE with FeCl_{3}
and the positive ion/electrophile is then attracted to the (delocalised) electrons in the benzene ring/negative benzene ring (1)
(b) (i)

(1)

2 (or 3 or 4)-chloro(-1-)methylbenzene (1) - must be consistent with formula
ALLOW 1-chloro-4-methyl benzene / 1methyl-4-chlorobenzene etc
(ii) Chlorine (in an inert solvent) (1)

NOT aq/ $\mathrm{H}_{2} \mathrm{O}$
iron OR iron(III) chloride (1)
Mark independently
ALLOW formulae
(c) (i) Substitution (1)

Nucleophilic (1)
IGNORE hydrolysis
NOT S $_{\mathrm{N}} 1$
NOT hydrogenation
(ii) second order
because the halogenoalkane is a primary one / two particles/both reactants are involved in RDS (1)
Formulae showing carbon atom has a $\delta+$ with OH^{-}attacking it

(1)

If $S_{N} 1$ ALLOW max 1 for showing halogenoalkane ionising in slowest step
(d) (Full) oxidation /redox

NOT reduction
NOT partial oxidation
(e) Any 2
set them on fire/heat (1)
both burn with a sooty flame (1)
add sodium (1)
both give off bubbles of gas/hydrogen/fizz/effervesce/sodium will
disappear/white solid forms (1)
add PCl_{5} (1)
misty fumes of $\mathrm{HCl}(\mathbf{1)}$
nitric and sulphuric acid (1) NOT nitration
produces yellow/brown/red products (1) NOT brown gas disappears
If they describe esterification to produce oily drops of the same ester max 2
NOT reagents which produce no reaction eg. Brady's reagent NOT decolorise bromine water
NOT decolorise bromine and iron / iron bromide 4
14. (a) (i) $\mathrm{C}_{3} \mathrm{H}_{5}$ (1)
$7.2 / 24=0.3 \mathrm{~mol} \mathrm{CO}_{2} / 0.3 \mathrm{~mol} \mathrm{C} \mathrm{(1)}$
$4.5 / 18=0.25 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / \frac{4.5 \times 2}{18}=0.5 \mathrm{~mol} / \mathrm{g} \mathrm{H}(\mathbf{1})$
ALLOW deductions based on one calculation
e.g. $0.5 \mathrm{~g} \mathrm{H} \therefore 3.6 \mathrm{~g} \mathrm{C} \therefore \frac{3.6}{12}=0.3 \mathrm{~mol} \mathrm{C}$.

Follow through their reasoning - if it logically arrives at the correct ratio (2)
e.g. $\frac{4.1}{82} \mathrm{~mol} \mathrm{~A} \rightarrow \frac{4.1}{82} \times 6 \mathrm{~mol} \mathrm{C} \rightarrow \frac{4.1}{82} \times 6 \times 24 \mathrm{dm}^{3} \mathrm{CO}_{2}$ etc
(ii)

(1)

(1)

Mark independently
ALLOW other three, four and five membered ring structures
ALLOW fully/partially displayed formulae
NOT open-chain structure with $2 \times C=C$ NOR $C_{6} H_{10} \mathrm{Br}_{2}$, open chain with one $C=C$
(iii) Structural formula (1)

OR T.E. providing correct numbers of bonds
May be in equation
Ethanol/alcohol(ic) and heat / pressure / sealed tube (1)
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}+4 \mathrm{NH}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}+2 \mathrm{NH}_{4} \mathrm{Br}$ (2)
ACCEPT HBr (for(1))
(b)

ACCEPT any multiples / partial multiples
ALLOW allowed TE from (iii)
IGNORE ' n 's
Condensation (polymerisation) (1)
15. (a) Delocalisation / π-systern (1) due to overlap of six p-orbitals OR
Due to overlap of p-orbitals around the ring (1)
Confers stability / benzene at a lower energy level / more energy needed to break bonds compared with having three separate π / double bonds / cyclohexatriene, Kekule structure (1) Standalone mark
(b) $\quad 1^{\text {st }}$ step: sulphuric and nitric acid (1) concentrated (1)
Intermediate: Nitrobenzene $/ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ (1)
$2^{\text {nd }}$ Step: Tin / iron and conc HCl (followed by addition of alkali) (1) disallow Sn or Fe as catalyst
(c) (i) $\mathrm{AlBr}_{3} / \mathrm{FeBr}_{3} / \mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6} / \mathrm{FeCl}_{3} / \mathrm{Fe}_{2} \mathrm{Cl}_{6} \quad 1$
(ii) $\mathrm{AlBr}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \mathrm{CH}_{3} \mathrm{CH}_{2}^{+}+\mathrm{AlBr}_{4}^{-}$

ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$in this equation only

(1) for arrow

Intermediate (1)

(1) for arrow from $\mathrm{C}-\mathrm{H}$ bond

OR

(1) for arrow

(1) for arrow

Arrows

$$
\begin{aligned}
& \text { Do not allow to } \mathrm{C}_{2} \mathrm{H}_{5}^{+} \\
& \text {ALLOW to point / go to + charge } \\
& \text { ALLOW } \mathrm{C}_{2} \mathrm{H}_{5} \text { in intermediate }
\end{aligned}
$$

(iii) Electrophilic substitution 1
16. (a) $\mathrm{C}_{10} \mathrm{H}_{8}$

ALLOW $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}$
NOT $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$
(b) (i) -600

NOT +600
NOT 600
(ii) Naphthalene is more/very stable than double bonds suggest (1) Must be a comparison for the $1^{\text {st }}$ mark
Therefore the electrons/bonds may be/are delocalised (over the ring system)
$O R$ it is a delocalised system (1)
No TE from (i)
Delocalised mark can be given if delocalisation mentioned in (iii)
(iii) No
because it is likely to react like benzene / delocalised structure / no double bonds
$O R$ bromine not a strong enough electrophile without a catalyst
OR "yes but only if bromine [NOT bromine solution] and a catalyst"
(c) (i) Reagent

2-chloropropane (1)
ALLOW 1-chloropropane OR other halogenopropanes
NOT chloropropane
NOT bromo-2-propane
ALLOW formula with or without non-systematic name
$A L L O W \mathrm{ClCH}\left(\mathrm{CH}_{3}\right)_{2}$ OR $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl} \quad O R \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HCl} \quad O R \mathrm{ClC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{H}$
Catalyst
aluminium chloride / $\mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6}$
OR aluminium bromide / AlBr_{3}
$O R$ iron(III) chloride/ FeCl_{3} (1)
NOT $\mathrm{AlCl}_{4}{ }^{(-)}$
NOT "iron" on its own
If both correct but wrong way round $\mathbf{1}$ (out of 2)
(ii) electrophilic (1)
substitution (1)
Can be given in any order
Mark independently
17. (a) (i) White precipitate OR white suspension OR white solid
(ii)

2,4,6-tribromophenol (1)
rest of equation if for formation of a tribromophenol (1)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3} \mathrm{OH}+3 \mathrm{HBr}$ scores (1)
(iii)

$\mathrm{C}=\mathrm{O}$ in ester must be shown
(iv) C (atom) is (very) $\delta+$ because Cl highly electronegative

OR Cl electron withdrawing (1)
IGNORE references to oxygen
(so C atom) susceptible to nucleophilic attack OR (so C atom)
strongly electrophilic (1)
IGNORE references to activation energy
(b) Sn and conc hydrochloric acid (accept conc HCl) OR Fe and conc hydrochloric acid (accept conc HCl)
IGNORE any references to NaOH
IGNORE references to Fe or Sn as a catalyst
(c) (i) • Sodium nitrite $\mathrm{OR}_{\mathrm{NaNO}}^{2}$ OR sodium nitrate(III) (1) NOT JUST HNO_{2}

- Hydrochloric acid OR dilute sulphuric acid OR aqueous sulphuric acid
ACCEPT HCl if qualified. Do not accept conc. sulphuric acid Only award the hydrochloric acid mark if NaNO_{2} or KNO_{2} or HNO_{2} given as co-reagent
(ii) Below $0^{\circ} \mathrm{C}$: reaction too slow (1)

Above $5{ }^{\circ} \mathrm{C}$: product decomposes OR diazonium ion decomposes (1)
(iii)

OR - O^{-} instead of -OH group
(iv) Dissolve in minimum volume of boiling solvent OR dissolve in minimum volume of hot solvent (1)
QWC NOT JUST "small volume"
[ALLOW any specified solvent including water]
Filter hot OR filter through heated funnel (1)
Cool or leave to crystallise (1)
Filter (under suction) (1)
Wash solid with cold solvent (and leave to dry)
OR wash solid with small volume of solvent (and leave to dry) (1)
5
18. (a) Nitric acid / HNO_{3} (1)

Dilute / 4M acid and boil/heat (1)
(b) Reduction

ALLOW redox
(c) (i) 4(-) aminophenol / 4(-)hydroxyphenylamine OR 1(-)amino(-)4(-)hydroxybenzene etc ALLOW para / p etc
(ii) Add copper(II) (sulphate solution) / Cu^{2+} (1)

Green / brown (precipitate) forms (1)
(d) (i)

Organic formula fully correct (2)
Only one group reacting (1)
(ii) No because, phenol is not a strong enough acid to react with sodium carbonate (1)

NOT "because phenol is a weak acid"
(e) (i) Van der Waals' and (permanent) dipole - (permanent) dipole, and QWC hydrogen bonds (1)

Van der Waals between aromatic rings / everywhere / anywhere (1) (Permanent) dipole force between carbonyl / C=O groups (1) Hydrogen bonds eg between $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}=\mathrm{C}$ (1)
BUT must make it clear which atoms are involved
(ii) Van der Waals total forces in paracetamol are too strong QWC OR

Hydrogen bonds in water are too strong
ALLOW carbon chain too long / large
ALLOW because of benzene ring
(f) (Broad) OH (stretching absorption from) (1)

3750 - $3200\left(\mathrm{~cm}^{-1}\right)$ (
OR
(Broad) NH (stretching absorption from) (1)
$3500-3140\left(\mathrm{~cm}^{-1}\right) \mathbf{(1)}$
Bond must be specified for $1^{\text {st }}$ mark but range mark is
not dependent on $1^{\text {st }}$ mark
(g) (i) $\quad \mathbf{C}_{8} \mathbf{H}_{9} \mathrm{O}_{2} \mathbf{N}^{+}$

Fully correct with charge
(ii) $43-\mathrm{CH}_{3} \mathrm{CO}^{+} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{CHNO}^{+}$
$93-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{+}$(1)
IGNORE charges unless both negative, then $\mathbf{1}$ max if fully correct ACCEPT semi-structural formulae but NOT

(h) No gastric / internal bleeding / suitable for younger children 1
19. (a) (i) Conc(entrated) / fuming sulphuric acid / sulphur trioxide / SO_{3} (1)

Accept oleum (1)
Reject sulphuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) Substitution (1)

Electrophilic (1) 2
(b) (i) To avoid losing too much vanillin (in the filtrate when crystallisation occurs) OWTTE

Accept to maximise the yield
Reject answer only referring to saturation
(ii) Insoluble impurities removed by hot/ first filtration (1)

Soluble impurities remain in solution (1)
(iii) Measure mpt (1)

Compare with data OR sharp melting point (1) 2
Accept bpt. method can only score $2^{\text {nd }}$ mark
(c) Vanillin is likely to be a product since

IR spectrum of product shows an absorption for aldehyde $\mathrm{C}=\mathrm{O}$ stretching /vibration (1)...
at about $1740-1720 \mathrm{~cm}^{-1}$ /any value within this range (1) (This is absent in the 2-methoxyphenol IR spectrum) 2
20. (a) Reagent: chloromethane $/ \mathrm{CH}_{3} \mathrm{Cl}$ (1)

Accept bromomethane/ $\mathrm{CH}_{3} \mathrm{Br}$ /iodomethane/ $\mathrm{CH}_{3} \mathrm{I}$
Catalyst: (anhydrous) aluminium chloride $/ \mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6}$ (1)
OR equivalent bromides
Accept iron(III) chloride/ bromide
Reject iron
Mark independently 2
(b) (i) (free) radical substitution 1
(ii) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{-}(\mathbf{1})$
$\mathrm{PhCH}_{3}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{PhCH}_{2}{ }^{+}+\mathrm{HCl}$ (1)
$\mathrm{PhCH}_{2}{ }^{\bullet}+\mathrm{Cl}_{2} \rightarrow \mathrm{PhCH}_{2} \mathrm{Cl}+\mathrm{Cl}^{\bullet}(\mathbf{1})$
any one of:
$2 \mathrm{PhCH}_{2}{ }^{\circ} \rightarrow \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
$\mathrm{PhCH}_{2}{ }^{+}+\mathrm{Cl}^{\circ} \rightarrow \mathrm{PhCH}_{2} \mathrm{Cl}$
$2 \mathrm{Cl}^{\bullet} \rightarrow \mathrm{Cl}_{2}$ (1)
[IGNORE curly arrows]
If the initiation or propagation steps are wrong, only the termination step can score consequentially on any two of their
radicals.

Dot must not be on Ph penalise once
P instead of Ph penalise once
(iii) flask and vertical condenser - need not be shown as separate items (1) [Ignore direction of water flow; penalise sealed condenser]
gas entry into liquid in flask (1) [allow tube to go through the side of the flask, but tube must not be blocked by flask wall]

Allow the gas to be bubbled down a tube coaxial with the condenser bore.
Bubbling gas into a beaker OR other vessel without a condenser 0 (out of 3)
heating from a electric heater/heating mantle/sand bath/water bath/oil bath (1) diagram or words labelling of diagram not necessary [IGNORE uv source]

Reject just 'heat', Bunsen
21. (a) (i) methylbenzene/phenylmethane
(ii)

Accept alternative substitution products with $-\mathrm{SO}_{3} \mathrm{H}$ group on other ring positions
$\mathrm{SO}_{3}{ }^{-} \mathrm{H}^{+}$
Accept multiple substitutions
Accept Displayed Formulae
Reject bonding to ring through H or O atom
(b) (i) (conc.) nitric acid (1) Accept HNO_{3}
Reject dilute, $\mathrm{HNO}_{3}(\mathrm{aq})$
(conc.) sulphuric acid (1) Mark independently 2
Accept $\mathrm{H}_{2} \mathrm{SO}_{4}$
Reject $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
Reject incorrect formula in conjunction with name
(ii) NO_{2}^{+} 1
Reject $\mathrm{NO}_{2}{ }^{\delta+}$
(c) (i) Substitution (1)
Electrophilic / electrophile (1) 2
Accept either way round
Reject incorrect type or mechanism in conjunction with correct response
(ii) the ring is more susceptible to attack by electrophiles/ more nucleophilic/ ring has greater electron density (1) as methyl group pushes electrons into ring/ toluene has a dipole moment (1) 2
(d) Oxidation 1Accept partial oxidationReject redoxReject full oxidation
(e) sodium/ potassium dichromate((VI)) (1)

Accept $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
sulphuric acid (1)
or
Potassium manganate ((VII)) (1)
Accept $\mathrm{H}_{2} \mathrm{SO}_{4}$
dil. or conc.
'acidified dichromate' = 1
or
KMnO4
Sulphuric acid (1)
Accept $\mathrm{H}_{2} \mathrm{SO}_{4}$
'acidified manganate' = 1
OR
Potassium manganate ((VII)) (1)
Sodium hydroxide (1)
Reject incorrect oxidation numbers
Reject incorrect Formula in conjunction with correct name
22. (a) (i)

Positive charge must be on the N atom The minus charge must be on the O in the $\mathrm{C}-\mathrm{O}$ if no delocalisation shown

Accept delocalised carboxylate group with a negative charge shown
Reject compressed structural formula
(ii) $\left(\mathrm{H}^{+}\right.$from) COOH (group) protonates the $-\mathrm{NH}_{2}$ (group)

Accept transfer of H^{+}from COOH to NH_{2}
Or
"self-protonation"
Reject just "protonation"
Reject just "acid-base reaction"
(iii) Read the whole answer!

High energy needed to overcome (strong) ionic attractions (1)
Accept "ionic bonds" or "ionic lattice" instead of "ionic attractions"

Reject just "intermolecular forces"
Or H bonding
Or van der Waals' forces etc award zero overall
between zwitterions (1)
Accept between adjacent species
Ignore reference to "molecules" if clearly used in the context of attraction between ions
(b) (i) ${ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH} /{ }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COOH} /{ }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COOH}$

OR written right to left
OR

Accept $-\mathrm{CO}_{2} \mathrm{H}$
OR
$-\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$
$\mathrm{Or}-\mathrm{NH}_{3} \mathrm{Cl}$
Reject molecular formula
(ii) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} / \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} /$

Accept - COONa
or
$-\mathrm{COO}^{-} \mathrm{Na}^{+}$
Reject molecular formula
(iii) $\mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{COOH} /$

Accept $\mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
OR 'no reaction' (1)
Reject molecular formula
(iv) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3} /$

Accept $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
(c) (i) (Glutamic acid molecule) has four different groups attached to a C (atom)
Or
(Glutamic acid molecule) has four different groups attached to a chiral centre

Accept contains an asymmetric carbon (atom) Or molecule has no plane of symmetry

Reject just "has a chiral centre" Or Just "the molecule is asymmetrical"
OR
has mirror images which are not superimposable
(ii) (the isomers) rotate the plane (or polarisation) of (plane-) polarised light (1)

Accept "....rotate plane polarised light"
in opposite directions (1)
Reject just "in different directions"
Ignore any reference to polarimeter
(d) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}(\mathbf{1})$

[Monomers can be given in either order]
Accept $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$
$\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} / \mathrm{HO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H} /$

$\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$
Or $\mathrm{COCl}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COCl}$
23. (a) (i)

Bond from benzene ring must be to the sulphur atom Hydrogen atom must be linked to oxygen

Accept $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$
Accept $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{OH}$
Reject $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HSO}_{3}$
(ii) Fuming sulphuric acid / oleum / sulphur trioxide / SO_{3} / sulphur trioxide or SO_{3} in sulphuric acid

Accept concentrated sulphuric acid / $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
Reject $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) /$ sulphuric acid / dilute sulphuric acid
(iii) (aromatic) Electrophilic substitution

Accept Electrophillic / Electrophylic / Eletrophilic substitution
Reject Electrophic substitution
(iv) $\mathrm{SO}_{3} / \mathrm{SO}_{3} \mathrm{H}^{+}$

Ignore name if given with formula
Accept $\mathrm{HSO}_{3}{ }^{+}$
Reject sulphur trioxide $/ \mathrm{SO}_{3}{ }^{+} / \mathrm{SO}_{3}{ }^{-}$
(b) (i)

Allow TE from (a)(i) 1
Accept

Formula for 2,6-dimethyl benzene sulphonic acid
(ii) Reagent $\mathrm{X}: \mathrm{CH}_{3} \mathrm{Cl}$ (1)

Catalyst Y: AlCl_{3} (1)

> Allow TE from (b)(i) e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ if an ethylbenzene
> Accept $\mathrm{CH}_{3} \mathrm{Br} / \mathrm{CH}_{3} \mathrm{I}(\mathbf{1})$
> Accept $\mathrm{Al}_{2} \mathrm{Cl}_{6} / \mathrm{AlBr}_{3} / \mathrm{AlI}_{3}(\mathbf{1})$
> One correct name and one correct formula (2) Names for both answers (1 max)
(iii) Hydrogen chloride $/ \mathrm{HCl}$

Accept answer consequential on (b)(ii), e.g. HBr
Reject hydrochloric acid
(c) (i) 4-chloro-3, 5-dimethylphenol

3,5-dimethyl-4-chlorophenol
Accept no/wrong punctuation Allow name based on hydroxybenzene Allow "cloro" or "methyl"
(ii) Hydrogen bonding interactions between dettol and water are weaker than those between water molecules
OR
Hydrogen bonding interactions between dettol and water are weaker thatn the van der Waals’ forces in dettol

Look for good use of scientific language. Answer must include a specific type of intermolecular force

Accept hydrogen bonding between dettol and water is weak
Reject dettol molecule is too big
Accept dettol can only form one H-bond with water/only has one OH group to H-bond with water

Reject arguments based on lone pairs of electrons on OH group being delocalised into the ring
24. (a) (i) (anhydrous) aluminium chloride
[Name or formulae]
Accept $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
Accept $\mathrm{AlBr}_{3} \mathrm{FeBr}_{3}$
Accept FeCl_{3}
Reject Fe
(ii)

$$
\begin{equation*}
\underset{\substack{1 \\ \mathrm{Br}}}{\mathrm{CH}_{3} \mathrm{CHCH}_{3}}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CHCH}_{3}+\mathrm{AlCl}_{3} \mathrm{Br}^{-} \tag{1}
\end{equation*}
$$

OR

Equation for formation of electrophile (1)
IGNORE if incorrect arrows added at this point
First arrow must be from $\mathrm{C}=\mathrm{C}$ or from or within ring to C with + and can point to + (1)

Correct intermediate as shown in mechanism above (1)
Second arrow from $\mathrm{C}-\mathrm{H}$ bond into ring (1)
Accept either a delocalised or Kekule ring
If $\mathrm{CH}_{3} \mathrm{CHBrCH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}^{+} \mathrm{CH}_{3}+\mathrm{Br}^{-}$loses $1^{\text {st }}$ mark but can score $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ marks
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}^{2+}$

Accept $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$
Reject $\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}$
(ii) secondary carbocation is more stable than primary (1)
primary carbocation $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$rearranges to produce a secondary carbocation
OR
primary carbocation $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$turns into a secondary carbocation
OR
a description of the rearrangement e.g. a hydrogen atom moves from the middle to the end (1)
(c) (i) First mark
sodium nitrite /sodium nitrate(III)/ NaNO_{2} (1)

Second mark

hydrochloric acid / $\mathrm{HCl}(\mathrm{aq})(1)$
IGNORE concentration of acid
$2^{\text {nd }}$ mark is conditional on NaNO_{2} or HNO_{2}
Reject HNO_{2}
Reject $\mathrm{HCl} /$ hydrogen chloride
(ii) below $0{ }^{\circ} \mathrm{C}$ reaction is too slow (1)
above $10^{\circ} \mathrm{C}$ the product/benzenediazonium ions decomposes /hydrolysed (1)

Accept HNO_{2} decomposes
(iii)

$\mathrm{N}=\mathrm{N}$ link, can be shown linear (1)
IGNORE other atoms
Remainder correct (1)

Accept -ONa or O^{-}instead of OH
Reject $-\mathrm{N}=\mathrm{N}-\mathrm{O}-$
(d) (i) QWC

First two

add 2,4-dinitrophenylhydrazine/Brady's reagent (1) orange/yellow ppt (1)
Allow this second mark if the name of the reagent is
slightly incorrect e.g. 2,4-diphenylhydrazine
Accept 2,4-dnp(h)
Accept any combination of yellow and orange
Must be ppt
Reject just "Red ppt"
Reject "solid" for "ppt"
OR
IR absorption due to $\mathrm{C}=\mathrm{O}$ stretch (1)
at $1700 \mathrm{~cm}^{-1}$ (1)

Third mark

Does not give a silver mirror with ammoniacal silver nitrate (or Tollens’ reagent)

Accept no change with Tollens'
OR
no red ppt/stays blue with Fehling's or Benedict's solution
Reject Iodoform
OR
$\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ does not change from orange to green/stays orange
OR
$\mathrm{H}^{+} / \mathrm{MnO}_{4}^{-}$does not change from purple to colourless/stays purple (1)
(ii) the $\mathrm{C}=\mathrm{O}$ group is polar and the nucleophile attacks the δ^{+}carbon (1)
whereas $\mathrm{C}=\mathrm{C}$ is non-polar/electron-rich, the double bond $/ \pi$-bond is attacked by electrophiles (1)
OR
$\mathrm{C}=\mathrm{O}$ is polar and $\mathrm{C}=\mathrm{C}$ is non-polar (1)
Nucleophile attacks the δ^{+}carbon in $\mathrm{C}=\mathrm{O}$ and electrophiles attack the π /double bond in $\mathrm{C}=\mathrm{C}$, which is electron rich/non-polar (1)
(iii)

both curly arrows in $1^{\text {st }}$ diagram, attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion; lone pair not essential. Arrow must start from bond between C and O and point towards the O (1)

Accept curly arrow from O to H^{+}

Intermediate - lone pair not essential but negative charge is essential (1)

Arrow from O (lone pair not needed) or negative charge to HCN or H^{+}, this can be shown on the diagram of the intermediate (1) If HCN is used the arrow from $\mathrm{H}-\mathrm{CN}$ bond is required

Any other ketone or aldehyde, max (2) 3
25. (a) (i) The activation energy for the reaction is high or to ensure that more molecules have $E \geq E_{a}$.

Accept $E>E_{a}$
Reject to overcome E_{a} alone
Reject reactants kinetically stable; reactants thermodynamically stable
(ii) protonates the alcohol (1)

Reject 'as a catalyst' alone
providing $\mathrm{H}_{2} \mathrm{O}$ as the leaving group which is more easily displaced by the bromide ion/is a better leaving group than hydroxide (1)

OR
reacts with $\mathrm{NaBr}(\mathbf{1)}$
to give HBr (which is the attacking reagent) (1)
(iii) H -bonding between water and the alcohol not strong enough to overcome hydrophobic interactions /effect of alkyl group (1)
acid and alcohol form ionic species $/ \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}_{2}{ }^{+}$which is more soluble (1)
Accept butyl group
(iv) Removes acid
Accept neutralises $\mathrm{HCl} / \mathrm{HBr}$
Accept neutralises acid
(v) Removes water 1
Accept absorbs water Accept dries the product
(vi) Electric heating mantle or sand bath or oil bath (1)
Accept water bath
Reject heat under reflux
Reject no naked flame
Reject fume cupboard
because the alcohol/reaction mixture/bromobutane is
flammable or because the heating is uniform and less
likely to crack the flask (1)
This mark is conditional on the first being scored.
Reject 'volatile' for 'flammable'
(b) QWC

EITHER

Intermediate (ion) in $\mathrm{S}_{\mathrm{N}} 1$ is planar (1)
Accept intermediate carbocation is a planar molecule intermediate molecule alone loses this mark
equal attack (by hydroxide ions) from either side (1)
produces a racemic mixture (1)
Reject attack by bromide ions
Note: Statement that the $\mathrm{S}_{\mathrm{N}} 2$ mechanism is consistent with the information cannot score any marks.

OR
$\mathrm{S}_{\mathrm{N}} 2$ involves attack from one side (1)
so configuration of the product would be inverted (1)
leading to retention of optical activity so must be SN1 (1)
Accept forms one optical isomer only
Statement that the reaction is $\mathrm{S}_{\mathrm{N}} 1$ alone scores zero.
(c) (i) Orange \rightarrow green
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{e}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ (1)
$\left(3 \mathrm{CH}_{3} \underline{\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \underline{C H}_{3} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \underline{\mathrm{CH}}_{3}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}\right)}\right.$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+$ $3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ (1)

No consequential marking on incorrect equations.
Accept $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
Accept equation having non-cancelled H^{+}ions
Reject equation having non-cancelled electrons
(iii) The broad peak/absorption/trough around $3400 \mathrm{~cm}^{-1}$ due to $-\mathrm{OH}(1)$

Accept 3230-3550
Reject broad transmission
has disappeared in the product to be replaced by $\mathrm{C}=\mathrm{O}$ at $1700 \mathrm{~cm}^{-1}$ (1)
Accept 1680-1750
If no reference to both groups responsible for the peaks then max (1)
OR
If no reference to both wavenumbers responsible for the peaks then max (1)
(d) (i) Addition of barium ions pulls equilibrium to r.h.s. (1) increases $\left[\mathrm{H}^{+}\right]$and so lower $\mathrm{pH} /$ the pH falls (1) stand-alone mark Reject '..so gets more acidic'
$\begin{array}{cc}\text { (ii) lower } \mathrm{pH} / \mathrm{pH} \text { falls } \\ \text { Reject 'mixture is more acidic' for 'lower } \mathrm{pH} \text { ' } & 1\end{array}$
26. (a) (i) Step 1

Reagent
Fuming sulphuric acid / sulphur trioxide/sulphur(VI) oxide/oleum (1)
Accept $\mathrm{SO}_{3} / \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
Reject (Concentrated) sulphuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$
Conditions
Reflux / heat (1)
Only allow heat for this mark if the reagent is reasonable (e.g. conc sulphuric acid)

Accept if just stated temperature must be above $75^{\circ} \mathrm{C}$

Step 2

Reagent
Sodium hydroxide (1)
Accept sodium carbonate/sodium
Accept hydrogencarbonate/sodium
Reject sodium chloride
(ii) Step 1
(electrophilic) substitution (1)
Accept sulphonation
Reject Nucleophilic substitution

Step 2

neutralisation or acid-base (1)
(b) (i) Friedel-Craft(s)

Accept phonetic spelling
(ii) Reagent

$$
\begin{aligned}
& \hline \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Cl} \\
& \mathrm{OR} \\
& \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}(\mathbf{1}) \\
& \quad \text { Accept (1-)chlorododecane } \\
& \quad \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{I} \\
& \text { Catalyst } \\
& \mathrm{AlCl}_{3} \mathbf{(1)} \\
& \quad \text { Accept } \mathrm{Al}_{2} \mathrm{Cl}_{6} \\
& \quad \text { Accept } \text { Aluminium chloride }^{\quad \text { Reject } \text { AlCl }_{4}} \\
& \quad \text { Reject } \text { AlCl }_{4}^{-}
\end{aligned}
$$

[8]
27. (a) Electrophilic substitution (1)

IGNORE extras eg Friedel Craft, alkylation UNLESS contradictory
1-chloro-(2)-methylpropane (1)
IGNORE punctuation
Accept (2)-methyl-1-chloropropane
Accept $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{Cl}$
Accept "Bromo"/"iodo" for "chloro"
Reject 1-methyl-2-chloropropane
Reject missing " 1 " from position of Cl in name
Catalyst
AlCl_{3} /aluminium chloride (1)
Accept $\mathrm{Al}_{2} \mathrm{Cl}_{6}, \mathrm{AlBr}_{3}, \mathrm{FeBr}_{3}$
(b) LiAlH_{4} is a source of $\mathrm{H}^{-} /$hydride ion (1)

Hydrogen might reduce/attack benzene ring/ H^{-}won't attack region of negative charge/ H^{-}can attack $\left(\delta^{+}\right) \mathrm{C}$ in keto group (1)

Reject comments on conditions or safety eg temperature, pressure
Reject $\mathrm{LiAlH}_{4} / \mathrm{H}^{-}$is a more powerful reducing agent
Reject H^{-}is a nucleophile/a stronger nucleophile
Reject any mention of attack on carboxylate ion (for $2^{\text {nd }}$ mark)
(c) Note: although many candidates have calculated the empirical formula, this is not required.
Molecular formula of ibuprofen $=\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathbf{(1)}$
Allow if given at end
Allow marks for masses and number of moles if answers are rounded to 2 SF in "OR" but method is correct.

EITHER

$\mathrm{M}_{\mathrm{r}}=206$ (1)
$1 \mathrm{~g}=\frac{1}{216} \mathrm{~mol}=4.854 \times 10^{-3} \mathrm{~mol}$
mass CO_{2} produced from 13 C
$=13 \times 44 \times 4.854 \times 10^{-3}=2.78 \mathrm{~g}(\mathbf{1})$
mass $\mathrm{H}_{2} \mathrm{O}$ from 18 H
$=9 \times 18 \times 4.854 \times 10^{-3}=0.787 \mathrm{~g}(\mathbf{1})$

OR

Mass C $=\frac{(2.78 \times 12)}{44}=0.758 \mathrm{~g}$
Mass $\mathrm{H}=\frac{(0.786)}{9}=0.0873 \mathrm{~g}(\mathbf{1})$
Moles $C=\frac{(0.758)}{12}=0.0632$
Moles $\mathrm{H}=0.0873$ (1)
Ratio C:H = 0.0632: $0.0873=13: 18$ (1)
(d) (i) (Aspirin and ibuprofen) both contain same (types of)
bond(s)(so absorb at same frequency/wavenumber)
Accept list of at least 4 bonds which are present in both
Reject "groups" for "bonds"
(ii) Data is required for mark
$\mathbf{Y}=$ paracetamol
Peak at 3500-3300 (N-H)
IGNORE mention of amine
OR 3500-3140 (N-H or amide)
OR 3750-3200 ((phenolic) O-H)
OR Only \mathbf{Y} has peaks above $3000 \mathrm{~cm}^{-1}$ (so must contain different type of bond to X and Z)

Reject $C-H$ in arene $=3030$ as present in both
Reject 1700-1630 (amide)
(iii) 57 in Ibuprofen
$\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+} / \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}{ }^{+} / \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}{ }^{+}$
OR
$\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}^{+} / \mathrm{CCO}_{2} \mathrm{H}^{+}(\mathbf{1})$
Accept structural or displayed formulae
Do not allow lines at
$15\left(\mathrm{CH}_{3}{ }^{+}\right)$
$76\left(\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}\right)$
$43\left(\mathrm{C}_{3} \mathrm{H}_{7}^{+}\right.$or $\left.\mathrm{CH}_{3} \mathrm{CO}^{+}\right)$
$45\left(\mathrm{COOH}^{+}\right)$
as present in both
Aspirin
59 (1) $\mathrm{OCOCH}_{3}{ }^{+} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{+}$(1)
OR
121 (1) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}^{+}$(1)
OR
180 (1) $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}^{+}$(parent ion) (1)
OR
137 (1) $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{O}^{+}$(1)
Penalise no/wrong charges once only 3
28. A
29. B
30. D
31. B
32. A
33. B
34. C
35. D
36. (a) B 1
(b) B 1
(c) A 1
(d) D 1
37. (a) (i)

(ii)

(1)

(1)
(b) (i)

(ii) $\begin{aligned} \mathrm{Br}_{2}+\mathrm{FeBr}_{3} \rightarrow \mathrm{Br}^{+}+\mathrm{FeBr}_{4}^{-} / \delta+\quad \delta- \\ \mathrm{Br}-\mathrm{FeBr}_{4}(\mathbf{1})\end{aligned}$

Step 1
Arrow from ring towards $\mathrm{Br}+(\mathbf{1})$
Intermediate (1)
Step 2
Arrow from bond, ring to H , to inside ring (and from FeBr_{4}^{-}
to H^{+}) and formation of products (1)
(iii) $\mathrm{FeBr}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{FeBr}_{3}+\mathrm{HBr}$
(c) (i) QWC

Both attacked by an electrophile (1)
Due to stability of delocalised ring (1)
benzene attacked by (stronger electrophilic) Br^{+} rather than $\mathrm{Br}^{\delta+}$ in Br_{2} (1)
(ii) QWC

Cyclohexene

Addition of Br^{-}does not involve bond breaking
/results in more exothermic reaction than loss of H^{+}(1)
Benzene
No Br^{-}available in benzene reaction (1) Stability of ring regained by loss of $\mathrm{H}^{+}(\mathbf{1})$
(d) Three / 3 1

