1. (i) Experiments 1 \& 2 , $\left[\mathrm{R}-\mathrm{CH}_{2}-\mathrm{Cl}\right] \times 3$, Rate $\times 3$ (1)
$\therefore 1^{\text {st }}$ order w.r.t. [R-CH2-Cl] (1)
Experiments $1 \& 3$, $\left[\mathrm{R}-\mathrm{CH}_{2}-\mathrm{Cl}\right]$ and $\left[\mathrm{OH}^{-}\right] \times 2$, rate $\times 4$ (1)
$\therefore 1^{\text {st }}$ order w.r.t. $\left[\mathrm{OH}^{-}\right]$(1)
(ii) \quad Rate $=\mathrm{k}\left[\mathrm{R}-\mathrm{CH}_{2}-\mathrm{Cl}\right]\left[\mathrm{OH}^{-}\right]$consequential on (i)
(iii) $\mathrm{k}=\frac{\text { rate }}{\left[\mathrm{RCH}_{2} \mathrm{Cl}\right]\left[\mathrm{OH}^{-}\right]}=\frac{4.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}}{0.050 \times 0.10 \mathrm{~mol}^{2} \mathrm{dm}^{-6}}=0.080$ (1) $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
(iv) $\left(\mathrm{S}_{\mathrm{N}} 2\right)$

3
Note $S_{N} 1$: allow if first order deduced from parts (1) and (ii) for full marks.
2. (a) (i) $K p=\frac{\mathrm{P}_{\mathrm{SO} 2}^{2} \times \mathrm{P}_{\mathrm{O} 2}}{\mathrm{P}_{\mathrm{SO} 3}^{2}}$ (1)
[] no mark
() OK
(ii)

$$
\begin{array}{cccc}
2 \mathrm{SO}_{3} & \rightarrow & 2 \mathrm{SO}_{2} & +\mathrm{O}_{2} \\
2 & & 0 & 0 \\
0.5 & & 1.5 & 0.75 \tag{1}
\end{array}
$$

Mark by process

1 mark for working out mole fraction
1 mark for $\times 10$
1 mark for correct substitution in K_{p} and answer
1 mark for unit
i.e. $\quad \mathrm{P}_{\mathrm{SO} 2}=\frac{1.5}{2.75} \times 10=5.46$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{O} 2}=\frac{0.7}{2.75} \times 10=2.73 \\
& \mathrm{P}_{\mathrm{SO} 3}=\frac{0.5}{2.75} \times 10=1.83
\end{aligned}
$$

n.b. could show mole fraction for all 3 and then $\times 10$ later to give partial pressure.
$\mathrm{Kp}=(5.46)^{2} \times(2.73) /(1.83)^{2}=24.5(\mathbf{1}) \mathrm{atm}(\mathbf{1})$
(b) (i) No effect (1) 1
(ii) No effect (1) 1
3. (a) (i) Working to show first order with respect to $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2}\right]$ (1)

Working to show first order with respect to $\left[\mathrm{l}^{-}\right]$(1) overall equation (1)
Consequential
(ii) Sum of power of the concentration terms (for thio and iodide) in rate equation / number of each species involved up to and including or, in, the rate-determining step in the reaction mechanism / Sum of the partial / individual orders / general equation of the form [thio] ${ }^{\mathrm{m}}[\text { iodide }]^{\mathrm{n}}$ overall order $=\mathrm{m}+\mathrm{n}(\mathbf{1})$
(iii) 36 (1) dm $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$ (1)

Consequential on part (i)
(iv) Rate equation depends on mechanism / rate equation only involves those species in the rate determining step / slowest step (1)
(b) (i) Colorimetry / conductivity / remove samples and titrate with (standard) sodium thiosulphate solution (1)
(ii) Constant temperature (1)
(iii) Colorimeter / conductivity adv that monitoring is continuous / does not need removal of samples
or
disadv of titration is problems with timing (1) 1
4. (a) (i) - Rate of reaction - Rate of decrease / change in concentration of reactants (1)

- Overall order of a reaction - sum of the powers to which concentration terms are raised in the overall rate equation (1)
(ii) (The stoichiometric equation includes all the reactants) the rate equation only includes those species involved in the rate determining step / rate depends on mechanism (1)

Intermediate(1)
(b) (i)

(iii) - Double conc. bromo compound rate double \propto power 1 (1)

- Treble conc of bromo compound and double cone OH rate only up three times thus not dependant on conc of OH (1)
Rate $=$ rate constant [bromoalkane] (1)
Must show use of data
(c) After given time remove sample (1) neutralise with nitric acid / quench / stop by adding specified reagent (1) add silver nitrate and observe extent of ppt.
/ as above and titrate solution with silver nitrate / titrate with specified reagent (1)
Allow 1 mark for continuous method based on conductivity or pH

5. (a) (i) $200 \times 0.05 / 330=30.3 \times 10^{-3}=3.03 \times 10^{-2}$ (1)
(ii) graph linear axes at a sensible scale (1) all points correct (1) sensible smooth curve (1)
calculate 2 rates correctly (2)
$1.25 \times 10^{-6}(1.0-1.5)$
$2.5 \times 10^{-5}(2.0-4.0)$
(b) (i) $0.0300-0.0150=800$
$0.0150-0.00750=900$
$0.0080-0.0040=800$
Any 2 half life correctly calculated (1) constant half life $=800(\mathbf{1})$
first order (1)
(ii) - second reaction faster than first at beginning (1)

- first speeds up when product present (1)
(c) (i) Presence of potassium (ions) or K^{+}
(ii) Add NaOH to solution until in excess (1)

Buff / cream / beige ppt. (turning brown) shows manganese(II) (1)
6. (a) Measure (volume/ amount of gas) with a gas syringe / inverted burette OR Loss in mass with (top pan) balance
OR Described titrimetric method (1)
\qquad at regular time intervals (1)
(b) (i) Rate is proportional to (hydrogen peroxide) concentration $O R$ Index of (hydrogen peroxide) concentration in rate equation is 1
(ii) \quad Rate $=\mathbf{k}_{(1)}\left[\mathrm{H}_{2} \mathrm{O}_{2}((\mathrm{aq}))\right] \quad 1$
(iii) Measure/ calculate/ find several/two hal-lives (1) (Check) half-lives are constant (1)
(c) (i)

Number of molecules with kinetic energy, E

General shape of T_{1} graph (1)
General shape of T_{2} graph: higher temperature peak lower and moved to the right (1)
Check that graphs start at zero - penalise once
Check that graphs do not meet energy axis - penalise once.
(Many) more molecules with energy in excess of $E_{A} / E_{\text {min }} /$ a certain value (1) Can be shown (as shading) on the diagram
Activation energy shown (1)
(ii) $1 / \mathrm{T} / 10^{-3} \mathrm{~K}^{-1}$

(iii) Gradient $=-9700$ (allow -9200 to -10200) (1)

$$
\mathrm{E}_{\mathrm{a}}=- \text { gradient } / \mathrm{E}_{\mathrm{a}}=-8.31 \times \text { gradient }(\mathbf{1})
$$

R
$=+81 \mathrm{~kJ} \mathrm{~mol}^{-1} /+81000 \mathrm{~J} \mathrm{~mol}^{-1}$ ALLOW 76 to 86
Correct answer, units, sign, 2SF (1)
7. (a) $\quad \mathrm{rate}=\mathrm{k}[\mathrm{A}][\mathrm{B}]$ (1) or any other where $m+n=2$
rate $=k[A]^{2}(\mathbf{1})$
rate $=k[B]^{2}(\mathbf{1})$
(b) (i) Working to show first order with respect to H_{2} (1) Working to show second order with respect to NO (1) Overall rate equation (must be consequential) rate k $\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}(\mathbf{1})$
(ii) $0.02=\mathrm{k}(1.0)^{2}(1.0)$ or correct use of either of the other two rows of data $\mathrm{k}=0.02 / 1.0=0.02$ (1) $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ (1)

Consequential on (b)(i)
(c) - Molecules move faster/have more kinetic energy (1)

- More molecules / collisions have at least $\mathrm{E}_{\text {act }}(\mathbf{1})$
- Greater proportion/fraction of collisions are successful OR more of the collisions are successful (1)
(d) k increases
(e) - Catalyst provides an alternative route (1)
- With a lower activation energy (consequential on first mark) (1)
- Rate increases because more collisions have enough energy to overcome the lower activation energy (1)
[Accept argument based on Arrhenius equation for third mark] 3

8. (a) (i) The reaction produces ions $\left(\mathrm{H}^{+}\right.$and $\left.\mathrm{Br}^{-}\right)$/ the number of ions increases 1
(ii) To enable the halogenoalkane to mix with water / to dissolve / to increase solubility 1
(iii) The rate doubles 1
(iv) Order 1/first order $\quad 1$
(v) Water a possible reactant is present in excess 1
(b) (i) $\frac{0.75}{5}=0.15 / 0.150\left(\times 10^{-3}\right)$
$\frac{1.5}{9}=0.17 / 0.167\left(\times 10^{-3}\right)$
$\frac{2.25}{14}=0.16 / 0.161\left(\times 10^{-3}\right)$
Method (1)
Answers (1) 2
(ii) Rate is unaffected / very little affect 1
(iii) Zero 1
(c) (i) Rate $=k_{(1)}\left[\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}\right] \quad 1$
(ii)

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br} \xrightarrow{\text { slow }} \mathrm{C}_{5} \mathrm{H}_{11}^{+}+\mathrm{Br}^{-}(\mathbf{1}) \\
& \mathrm{C}_{5} \mathrm{H}_{11}^{+}+\mathrm{OH}^{-} \xrightarrow{\text { fast }} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}(\mathbf{1)}
\end{aligned}
$$

No speeds (1 max)
Can be stated in words 2
9. (a) (i) $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
species (1)
balance (1)
(ii) $\operatorname{starch}(1)$
blue / blue-black to colourless (1) 2
(b) double $\left[\mathrm{I}_{2}\right]$ no change so zero order (1)
double [$\mathrm{Me}_{2} \mathrm{CO}$] doubles rate so first order (1)
rate $=\mathrm{k}\left[\mathrm{Me}_{2} \mathrm{CO}\right]\left[\mathrm{H}^{+}\right](\mathbf{1})$
(c) (i) Power to which concentration raised in rate equation OR the number of that species involved up to and including the rate determining step
(ii) Sum of the individual reaction orders OR sum of powers
(d) Iodine not involved in the rate determining step (1) two (1) NOT "more than 1"
(e) $\mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{Na} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CHI}_{3}+3 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O}$ CHI_{3} (1) other species (1) balance (1)
10. (a) 1

Time	Mass urea	$\mathrm{m}_{\text {final }}-\mathrm{m}_{\mathrm{t}}$
200	19.1	1.2
300	20	0.3

(b)

Labelled axes including units and sensible scale (1)
Correct plotting of points and smooth curve (1)
(c) $\left[\mathrm{NH}_{4} \mathrm{CNO}\right] /$ ammonium cyanate concentration
(d) (i) Half-lives starting at $\mathrm{t}_{0}=17,30 \mathrm{~min}($ each $\pm 5 \mathrm{~min}), 60 \pm 10$

Starting at $\mathrm{t}=16$, half-lives are $20,37 \mathrm{~min}$ (each $\pm 5 \mathrm{~min}$), 73 ± 10.
One correct (1)
Second and third correct half-life (1)
Max 1 if no units
(ii) Second order (1)

Because half-life is increasing / doubling / not constant (1)
(iii) Rate $=\mathrm{k}\left[\mathrm{NH}_{4} \mathrm{CNO}\right]^{2}$ or rate $=\mathrm{k}\left[\mathrm{NH}_{4} \mathrm{CNO}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
(e) (i) (rds =) slowest step / stage part of the mechanism 1
(ii) Order is with respect to ammonium cyanate as water is in excess (approximately 55.5 mol of water: 0.35 mol ammonium cyanate) (1) So only ammonium cyanate concentration is changing / water concentration does not change significantly (1)
11. (a) (i) Calculates or shows on graph two half-lives that are the same (1) States that half-life is constant (1) Consequence on attempt at determining a half- life
(ii) Either

Cannot tell as water is in excess
Or
Overall order appears to be one as concentration of water does not change
(iii) Either

Calculates gradient correctly (1)
Divides by chosen ester concentration (1)
Answer and units (1)
Or
$k t_{1 / 2}=\ln 2(\mathbf{1})$
substitutes values (1)
k in units of hr^{-1} (1)
(b) (i) Reaction with higher activation energy has smaller $k \quad 1$
(ii) (Second) has a catalyst present 1
[11]
12. (a) (i) order wrt 2-bromo-2-methylpropane = 1/first (1) order wrt sodium hydroxide $=0 /$ zero (1)
(ii) rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right][\mathrm{NaOH}]^{0}$
$/$ rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]\left[\mathrm{OH}^{-}\right]^{0}$
$/$ rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$
(b) $\mathrm{k}=$ rate $/\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]=\left(1.5 \times 10^{-4}\right) /\left(5 \times 10^{-4}\right)=3.0 \times 10^{-1} / 3 \times 10^{-1} / 0.3$ (1) s^{-1} (1)
(c) Yes as only species in the rate determining step/ slowest step / equation in (c) are in rate equation.
(d) $\quad 1 /$ temp $\quad \ln$ (rate)
(1)
(1)
(e)

Axes correct way round and labelled correctly, sensible scales ie
covering more than half of grid (1)
All points plotted accurately ignoring small errors, best fit straight line drawn (1)
Numbers on vertical axis should increase going upwards.
(f) \quad gradient $=-8.32 \times 10^{3}(\mathrm{~K})(\mathbf{1})$

ALLOW-7800 to - 8900 (k)
$E_{\mathrm{a}}=-8.31 \mathrm{x}$ gradient. $=+69 \mathrm{~kJ} \mathrm{~mol}^{-1} /+69000 \mathrm{~J} \mathrm{~mol}^{-1}$
$A L L O W+65$ to $+75 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1)
13. (a) Withdrawal of sample of known volume/ measured amount/ using (1) pipette (1)
Quench (with ice)
Titrate with acid of known concentration (1)
OR
Use of pH meter (1) Calculation of $\left[\mathrm{H}^{+}\right]$(1)
Calculation of $\left[\mathrm{OH}^{-}\right.$] using K_{w} expression (1)
(b) (i) Axes labelled with suitable scale [$>1 / 2$ available space on both (1) axes] (1)
All points plotted accurately and smooth curve
(ii) $240 \mathrm{~s}+/-30 \mathrm{~s}$ ignore missing or incorrect units 1
(iii) $1^{\text {st }}$ order as half-lives are constant.
(iv) Overall order as (initial) concentrations are equal (not volume) / neither reactant is in excess/ equimolar/equal amounts
(v) Rate $=\mathrm{k}\left[\mathrm{OH}^{-}\right] /[\mathrm{NaOH}] /\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$
(c) (i) $\mathrm{S}_{\mathrm{N}} 1$ (1)
as only 1 reactant in rate determining step, (as 1st order (1) overall)/ it is a tertiary halogenoalkane
(ii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Br}^{-}$(1)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ (1)
Must be consistent with b(iii)
$A L L O W \mathrm{~S}_{\mathrm{N}} 2$ if consistent.
14. (a) (i) sum of the powers to which the concentration (terms) are raised in the rate equation / number of species involved up to and including the rate determining step (in the reaction mechanism)
OR
General equation with sum of partial orders explained
(ii) constant (of proportionality) in the rate equation / numerically = rate when all concs $1 \mathrm{~mol} \mathrm{dm}^{-3}$ / correct example
(b) (i) Both orders 1 (1)

Double concentration of one while other is constant and the rate doubles $O R$ refer to two specific experiments (1)
(ii) rate $=k\left[\mathrm{CH}_{3} \mathrm{I}\right]\left[\mathrm{OH}^{-}\right]$
consequential on (i)
(iii) e.g. $k=$ rate $/\left[\mathrm{CH}_{3} \mathrm{I}\right]\left[\mathrm{OH}^{-}\right]$
so $k=1(.0) \times 10^{-3}(\mathbf{1}) \mathrm{mol}^{-1} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \mathbf{(1)}$
Consequential on (ii)
(c) (i) IGNORE shape and position of bonds

DO NOT ALLOW OH ${ }^{\cdots} \cdot \mathrm{C}$

Arrow from bond to Br must be in first step
Lone pair not essential, but if it is shown the arrow must start from it. ALLOW arrow from negative charge
Max 1 for completely correct $S_{N} 1$ mechanism
(ii)

Energy labelled and levels of reactants and products (1) If double hump can get $\mathbf{1}$ (out of $\mathbf{2}$) for levels
15. (a) (i) Points plotted correctly (1)

Curve drawn (1)
(ii) Tangent drawn and at correct place (1)

Calculation of Δy and $\Delta x(1)$
$\Delta \mathrm{y} \div \Delta \mathrm{x}$ to give slope (ignore sign of slope) (1)
Accuracy of answer: accept anything between 0.01 and 0.02 (1)
(b) (i) Rate = slope (or more accurately rate $=-$ slope $)$

OR
$0.060 \div$ their slope (= 4 approximately) (1)
so, when the concentration halves, the rate goes down by a factor of 4, (1)
so the reaction is second order (stand alone mark) (1)
(ii) Any two of

I Rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right]$
II Rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]^{2}$
III Rate $=\mathrm{k}\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right]^{2}$ (2)
[Only penalise the omission of k or wrong type of [] once. Rate equations must be marked consequentially on their order in (i)]

Repeat experiment using double / different initial $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$ / initial [$\mathrm{H}_{3} \mathrm{AsO}_{3}$], (1)
but keeping the [other] unchanged (1)
E.g. Any one of the following, as applicable to their two chosen rate equations

If initial rate doubles rate equation \mathbf{I} is correct
If initial rate quadruples with doubling $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$, rate equation II is correct

If initial rate does not alter with doubling / changing [$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$], rate equation III is correct
If initial rate quadruples with doubling $\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right]$, rate equation III is correct

If initial rate does not alter with doubling / changing $\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right]$, rate equation II is correct. (1)
16. (a) (i)

Starts at zero and approaching x-axis (1)
Maximum greater and at lower energy(1) - T_{2} needs only to be just higher than T_{1}
T_{2} curve must go below T_{1} curve approaching the x-axis
(ii) As the temperature increases the energy of the particles increases (1)

Use the diagram shading areas
$O R$ more particles to the right hand side of E_{A} line (1)
and so more (successful) collisions/particles have energy greater /
equal or greater than the activation energy (1)
NOT "equal" on its own
NOT mention of "frequency of collisions" on its own
(iii) A catalyst provides an alternative route with a lower activation energy/ which requires less energy (1)
so more collisions / particles have energy greater than the activation energy (1)
(b) (i) e.g.

Measure the volume of gas given off in a given time / count bubbles / obscuring cross using limewater (1)
and then repeat over a range of temperatures (1)

No diagram max 3

If method shown cannot possibly work max 1 ie waterbath or sensible range of temperatures BUT NOT different temperatures
Penalty
-1 for poor diagram

(ii) Positive

1 mol goes to 4 moles/particles (so more disorder) /increase in number of moles/particles (1)
products include a gas (and so more disorder) (1)
NOT 1 mole of compound/element goes to 4 moles of compound/element

If "negative" 0 (out of 2)
(iii) Positive with some explanation e.g. $\Delta \mathrm{S}_{\text {surroundings }}=-\Delta \mathrm{H} / \mathrm{T} O R$ because reaction is exothermic (1)
$\Delta \mathrm{H}$ is therefore negative and so $\Delta \mathrm{S}_{\text {surroundings }}$ must be positive (1) If negative given in (ii) allow TE here
17. (a) (i) Correct points (1)

Smooth curve (1)

Time/ min
(ii) First half life $15 \mathrm{~min}(\pm 1 \mathrm{~min})$ (1)

Second half life 15 min (\pm I min) (1)
If not shown on graph max (1)
(iii) $1^{\text {st }}$ order (1)
$\mathrm{t}_{1 / 2}$ is constant (1)
(b) (i) Zero
(ii) Rate $=\mathrm{k}$ [2-bromo-2-methylbutane] ALLOW a formula

Mark consequentially on (a) (iii) and (b) (i)
(iii)

(1)

Mark consequentially on (ii), i.e. If $S_{N} 2$ mechanism given in (b) (ii), then one mark for each arrow (2) and transition state including sign (1)
(c) The intermediate / carbocation

is planar (1)
(Equal) attack from either side (1)
(therefore) racemic mixture (produced) (1) Standalone mark
18. (a) (i) Negative with some sensible explanation eg fewer moles of product (1)

3 moles of gases going to 2 moles of gases (1)
(ii) Positive with some explanation eg exothermic so surroundings gain entropy (1)
$\Delta S_{\text {surroundings }}=-\frac{\Delta H}{\mathrm{~T}} \quad$ [OR given in words]
OR
$\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}$ [OR given in words]
as reaction goes, $\Delta S_{\text {total }}$ must be positive therefore $\Delta S_{\text {surroundings }}$ must be positive

OR
Surroundings gain energy so more ways of arranging energy (1)
(b) (i) $\quad(\mathrm{Kp})=\frac{\mathrm{P}_{\mathrm{NO}_{2}}{ }^{2}}{\mathrm{P}_{\mathrm{NO}^{2}} \times \mathrm{P}_{\mathrm{O}_{2}}}$

Check that it is not a " + " on denominator.
ALLOW () but NOT [] eg $\operatorname{ALLOW}\left(\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}\right)^{2}$ etc
ALLOW $\left(\mathrm{pNO}_{2}\right)^{2}$
$\mathrm{Atm}^{-1} / \mathrm{Pa}^{-1} / \mathrm{kPa}^{-1} / \mathrm{m}^{2} \mathrm{~N}^{-1}$ (1) $-2^{\text {nd }}$ mark dependent on $1^{\text {st }}$
ALLOW atms ${ }^{-1} /$ atmospheres $^{-1}$
NOT atm ${ }^{-}$etc
NOT Kpa ${ }^{-1}$
(ii) Temperature

A lower temperature is needed to get a better yield (and would cost less) because the reaction is exothermic (1)
but the lower temperature may slow the reaction down too much OR reverse argument (1)

Pressure
A high pressure will increase yield as only two moles on the right compared to three on the left/less moles on the right hand side (1)

It will also increase the rate of the reaction (1)
Low pressure because of cost only gets mark if higher yield at higher pressure identified
To award any of the yield marks must say why
(c) (i) Must be a quantity that can be measured Eg
The pressure could be measured (1)
as it will decrease as the reaction proceeds because there are only two/fewer moles on the right compared to three on the left (1)
OR colour (1)
as the nitrogen(IV) oxide is brown whereas the other gases are colourless (1)

OR total volume (1)
which will decrease by one third/because there are fewer moles (1)
ALLOW acidity because NO_{2} acidic and others not (1 max)
NOT dilatometry
NOT temperature
(ii) [NO] second order (1)
because when conc of NO is doubled, the rate goes up four times (1)
$\left[\mathrm{O}_{2}\right]$ first order (1)
3
Then (iii), (iv) and (v) must follow consistently from (ii)
(iii) ALLOW TE from (ii) e.g.
rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$

$$
\begin{equation*}
\text { rate }=\mathrm{k}[\mathrm{NO}]\left[\mathrm{O}_{2}\right] \tag{1}
\end{equation*}
$$

(iv) third / 3
second / 2
1
(v) 8000 (1) $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ (1)
8 (1) $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (1)
Units can be given in any order
(d) The activation energy must be low $O R$ bond energies low NOT "more successful collisions" NOT large rate constant 1
19. (a) Rate of decrease OR rate of change in concentration of reactants $O R$ rate of increase OR rate of change in concentration of products.
$O R$ change in concentration of reactants with time OR change in concentration of products with time (1)
NOT just 'amount'
Sum of the powers to which the concentrations are raised in the rate equation OR number of species involved in (up to and including) the rate determining step OR sum of partial orders if illustrated with a general rate equation (1)
'Sum of the partial orders' alone does not score.
(b) (i) Both orders correct (1)

EITHER
Expt $1+3$: double [A], doubles rate so order 1 (1)
Expt $1+2$: double [B], four \times rate so order 2 (1)
OR
Double [A] keeping [B] constant doubles rate so order 1 (1)
Double [B] keeping [A] constant four \times rate so order 2 (1)
Omission of experiment number or keeping a concentration constant to be penalised ONCE only (1)
(ii) \quad Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$.

Mark consequentially on (i)
(iii) $\mathrm{k}=\frac{\text { rate }}{[\mathrm{A}][\mathrm{B}]^{2}}=\frac{0.00200}{0.100 \times(0.100)^{2}}$

$$
=2(.00)(\mathbf{1}) \mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~min}^{-1}(\mathbf{1})
$$

Consequential on their rate equation in (ii)
Use of experiment 2 or experiment 3 can score max (1)
(iv) $A+B \rightarrow A B$
$A B+B \xrightarrow{r d s} A B_{2} \mathbf{(1)}$ for first two equations
$A B_{2}+B \xrightarrow{\text { fast }} A B_{3}(\mathbf{1})$
OR
$B+B \rightarrow B_{2}$
$A+B_{2} \xrightarrow{r d s} A B_{2}(\mathbf{1})$ for first two equations
$A B_{2}+B \xrightarrow{\text { fast }} A B_{3}(\mathbf{1})$
OR
$A+2 B \xrightarrow{\text { slow } / \text { rds }} A B_{2}$ (1)
$A B_{2}+B \xrightarrow{\text { fast }} A B_{3}$ (1)
Identifying slow(est) OR rate determining step by appropriate notation (1)
$\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ scores zero
(c) (i)

All points plotted accurately (1)
with best-fit straight line drawn (1)
(ii) Gradient eg $=\frac{-4.25-(-3.10)}{0.00330-0.00310}$

$$
\begin{aligned}
& =\frac{-1.15}{0.00020} \\
& =-5750(\mathrm{~K})(\mathbf{1})
\end{aligned}
$$

ALLOW $=-5450$ to $-6050(\mathrm{~K})$ but MUST have a negative sign $A L L O W$ if gradient is left as a correct fraction such as $\frac{-1.15}{0.00020}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}} & =(+) 5750 \times 2.30 \times 8.31 \\
& =(+) 110 \mathrm{~kJ} \mathrm{~mol}^{-1} /(+) 110000 \mathrm{~J} \mathrm{~mol}^{-1}(\mathbf{1})
\end{aligned}
$$

ALLOW $=(+) 104$ to $(+) 116 \mathrm{~kJ} \mathrm{~mol}^{-1} 2$ IGNORE S.F.
($2^{\text {nd }}$ mark consequential on gradient, but value of E_{a} must be in correct units)
20. (a) Any 2

Measure the loss in mass as a gas/carbon dioxide is given off (1)
Measure the concentration of the acid by titration OR Carry out a titration with sodium hydroxide (1)
NOT "titration" on its own
Measure conductivity because 4 ions go to 3 ions / decrease in ions / change in number of ions (1)

Measure pH because acid is used up / changes / concentration changes /one reactant is acidic (1)

NOT dilatometry / nmr / x-ray crystallography / temperature change / colorimetry / indicator / change in mass of CaCO_{3}
(b) Initially some carbon dioxide dissolves in the solution (until the solution is saturated).
OR
Some CO_{2} might escape whilst adding acid/before putting on bung

(i)	$88\left(\mathrm{~cm}^{3}\right)$			1
(ii)	95	72	16	
	125	79	9	
	155	84	4	
	185	87	1	1

(iii) The concentration of the hydrochloric acid / HCl OR [HCl]
NOT concentration of reactants
(iv)

ALLOW extrapolated back to between 88 and 100
points correctly plotted (1)
ALLOW TE for points
and reasonably smooth curve drawn (1)
NOT dot-to-dot
(v) three successive half-lives shown on the graph (1)

MUST start at defined volume NOT $0 \mathrm{~s} / 85 \mathrm{~cm}^{3}$
all three values similar about 37s (1)
ALLOW 32-42 or show on graph
NOT 40, 80, 120
constant half-life / half-life not increasing means first order reaction (1)
If only two half lives shown max 2
If in (v) zero $/ 2^{\text {nd }}$ order deduced max 1 for first part but TE allowed to parts (vi) and (vii)
(vi) rate $=\mathrm{k}[\mathrm{HCl}]$
$O R$ rate $=\mathrm{k}[\mathrm{HCl}]^{1}$
$O R$ rate $=\mathrm{K}[\mathrm{HCl}]^{1}\left[\mathrm{CaCO}_{3}\right]^{0}$
NOT rate $=\mathrm{k}\left[\mathrm{V}_{\text {final }}-\mathrm{V}_{\mathrm{t}}\right]^{1}$

If zero order
rate $=\mathrm{k}$
$O R$ rate $=\mathrm{k}[\mathrm{HCl}]^{0}$
If second order
rate $=\mathrm{k}[\mathrm{HCl}]^{2}$
NOT rate $=\mathrm{k}\left[\mathrm{CaCO}_{3}\right]^{1}[\mathrm{HCl}]^{1}$
T.E zero order $-\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
second order $-\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ 1
(d) $\Delta \mathbf{S}_{\text {system }}$
positive + some sensible reason eg gas given off (1)
as a mole of a gas given off and three moles including one solid becomes three moles with no solid / gas more random than solid
OR
Gas more disordered than a solid
OR
Despite same number of moles/particles (1)
$\Delta \mathbf{S}_{\text {total }}$
positive + some reason (1)
eg
positive because reaction exothermic / favourable (1)
positive + good reason (2)
eg
positive because reaction is spontaneous / goes to completion / feasible
OR $\Delta \mathbf{S}_{\text {surroundings }}$ is positive because $\Delta \mathrm{H}$ is negative /
reaction exothermic $\therefore \Delta \mathrm{S}_{\text {total }}$ positive (2)
[provided $\Delta \mathrm{S}_{\text {system }}$ shown positive earlier]
21. (a) (i) $(5.0 / 1000) \times 0.010=5.0 \times 10^{-5}(\mathrm{~mol})$
(ii) $1 / 2 \times 5.0 \times 10^{-5}=2.5 \times 10^{-5}(\mathrm{~mol})(1)$

TE from (i)
(iii) $2.5 \times 10^{-5} \times(1000 / 40.0)=6.25 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$6.25 \times 10^{-4} / 5=1.25 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(\mathbf{1})$
Allow T.E.
Accept (ii) X5: 2 marks
Accept (ii) $\div 5: 1^{\text {st }}$ mark
(b) (i) First
(ii) First (0)

Comparing experiments $2 \& 3$
[I^{-}] doubles, so from (b)(i) rate should also double yet rate is 6 times greater,
so extra trebling of rate must be caused by trebling of $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$
\Rightarrow Rate $\propto\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]^{1}$ (1)
Or other valid argument
1
(iii) \quad Rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right](\mathbf{1}) \quad 1$

Accept T.E. from (i) + (ii)
(iv) $\mathrm{k}=$ rate $/\left(\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right]\right)=2.74 \times 10^{-5} /(0.01 \times 0.02)$
$=\underline{0.137 \mathrm{dm}^{\mathrm{mol}} \mathrm{mol}^{-1} \mathrm{~s}^{-1}}$
numerical answer (1) units (1)
Mark independently
Accept T.E. from (iii)
22. (a) (i) QWC

Both orders correct (1)
Expt $1+2$: as [B] doubles rate x 4 so second order (wrt B)
OR
As [B] doubles with [A] constant rate x 4 so second order (wrt B) (1)

Expt $1+3$: as [A] doubles rate x 2 so first order (wrt A)
OR
As [A] doubles with [B] constant rate x2 so first order (wrt A) (1)
Omission of experiment numbers or failure to refer to constant concentration of the other reagent penalise once only
(ii) rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$

Can use upper or lower case " k "
Must be consequential on (i)
(iii) $k=\frac{0.00195}{0.10 \times 0.10^{2}}=0.195$ (1) $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1} \mathbf{(1)}$
[IGNORE s.f. in answer]
[If wrong experiment chosen only unit mark available]
Both marks consequential on (ii), but rate equation must include k
(b) (i) QWC

Increasing T means molecules have/collide with greater energy (1)
so a greater proportion /more of the molecules collide with/have $\mathrm{E} \geq \mathrm{Ea}$ /the activation energy (1)
so a greater proportion of the collisions are successful
OR
more of the collisions are successful/more successful collisions in a given time (1)
(ii) (at least) two steps (1)

Simultaneous collision of three particles is unlikely
OR valid mechanism e.g.
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$ fast
$A B+B \rightarrow \mathrm{AB}_{2}$ slow
OR
$A+B \rightarrow A B$ slow
$\mathrm{AB}+\mathrm{B} \rightarrow \mathrm{AB}_{2}$ fast (1)
Accept number more than two
(c) Value of slope $=-1.2 \times 10^{4}$

Accept any number between -1.15×10^{4} and -1.25×10^{4} inclusive

Negative sign (1) Value (1)
Multiply by -8.31 (1)
Divide by 1000 to give $104\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (1)
[units not essential but penalise wrong units]
allow 95.5 - 104 consequential on slope
Correct answer with some working (4)
Correct answer with no working (3)
Penalise -1 mark if final answer is negative
IGNORE sig figs
23. (a) measuring the time taken (1)
for the potassium manganate(VII) to become colourless/go brown (1)
OR
measuring the time taken (1)
for a measured volume of CO_{2} to be collected (1)
OR
Take sample at a given time (1)
(Quench and) titrate with $\mathrm{Fe}^{2+}(\mathrm{aq})(\mathbf{1})$
Accept measuring the time taken for the potassium manganate(VII) to change colour $=1$

Accept other suitable reducing agents
(b) (i) Glucose = 0 (1)
potassium manganate (VII) $=1$ - because when the concentration of (potassium manganate (VII)) doubles so does the rate/because the rate in experiment 1 is double the rate in experiment 2 (and $\left[\mathrm{KMnO}_{4}^{-}\right]$is double but $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]$ and $\left[\mathrm{H}^{+}\right]$ are constant) (1)
hydrogen ions $=1$ because order wrt $\left[\mathrm{MnO}_{4}^{-}\right]=1$ so when $\left[\mathrm{MnO}_{4}^{-}\right]$\& $\left[\mathrm{H}^{+}\right]$double, rate is quadrupled / when $\left[\mathrm{MnO}_{4}^{-}\right]$is quadrupled and $\left[\mathrm{H}^{+}\right]$is doubled rate goes up by a factor of 8 OWTTE (1)
(ii) rate $=\mathrm{k}\left[\mathrm{MnO}_{4}^{-}\right]\left[\mathrm{H}^{+}\right]$

OR
rate $=\mathrm{k}\left[\mathrm{KMnO}_{4}\right]\left[\mathrm{H}^{+}\right]$
Accept correct names
Accept expressions including $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]^{0}$
Accept TE from (b)(i)
(iii) $4 \times 10^{-3} \mathbf{(1)}$
$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \mathbf{(1)}$ unit mark independent of $1^{\text {st }}$ mark but must be consistent with rate equation

Accept units in any order
allow TE from (b)(i) \& (b) (ii)
(c) (i) $3.22 \times 10^{-3} \quad-4.00$
both needed for the mark
Accept 0.00322
Accept -4
(ii) labelled axes including units and sensible scale (1)
correct plotting of points and line of best fit (1)

Reject $/ 10^{-3}$
(iii) gradient $=-10823(\mathrm{~K})(\mathbf{1})$

$$
\mathrm{E}_{\mathrm{a}}=10823 \times 8.31=+89939 \mathrm{~J} \mathrm{~mol}^{-1}
$$

Accept gradient range $=-11200$ to -10400
Accept TE from gradient to E_{a}
$=(+) 90 \mathrm{~kJ} \mathrm{~mol}^{-1} /(+) 90000 \mathrm{~J} \mathrm{~mol}^{-1} \mathbf{(1)}$
Accept (+) 93 to (+) $86 \mathrm{~kJ} \mathrm{~mol}^{-1}$ but must be consistent with gradient
24. (a) (i) Hydroxide ions $/ \mathrm{OH}^{-} / \mathrm{OH}^{-}$(aq)

Reject sodium hydroxide $/ \mathrm{NaOH}$
(ii) $\quad \mathbf{A}: \frac{8.0 \times 10^{-4}}{33}=2.4(2) \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(\mathbf{1})$

B: $\frac{8.0 \times 10^{-4}}{16}=5.0(0) \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(\mathbf{1})$
(iii) (Comparing \mathbf{A} and \mathbf{B}), rate
(approximately) doubles/time halves when concentration (of 2-bromo-2methylpropane) doubles, so reaction is $1^{\text {st }}$ order (wrt 2-bromo-2-methylpropane)

Reject because $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right] \propto$ rate of reaction OR there is a steady increase in rate when $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]$ increases/is doubled
(iv) (Rate of reaction in $\mathbf{B}=5.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$)

Rate of reaction in $\mathbf{C}=1.2 \times 10^{-3} / 24$

$$
=5.0 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(\mathbf{1})
$$

Focus on the value 5.0×10^{-5} for $1^{\text {st }}$ mark
(Comparing \mathbf{B} and \mathbf{C}), rate remains constant when
concentration of NaOH changes (by 50%), so reaction is zero
order wrt NaOH (1)
Mark independently
Accept rate for C calculated to be the same as that calculated for \boldsymbol{B} in (a)(ii)
(v) Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{Br})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right]^{(1)}\left(\left[\mathrm{OH}^{-}\right]^{0}\right)$

Allow transferred error, but answer must be consistent with (iii) \& (iv)

Look for inclusion of rate constant, k

> Accept $[\mathrm{NaOH}]^{0}$ instead of $[\mathrm{OH}]^{0}$
> Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{(1)}\left(\left[\mathrm{OH}^{-}\right]^{0}\right)$
(vi) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{Br})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3} \xrightarrow{\text { slow }} \mathrm{CH}_{3} \mathrm{C}^{+}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}+\mathrm{Br}^{-}$(1) Positive charge must be on carbon shown

Identification of the rate determining step/RDS (1)
Only allow this $\mathrm{S}_{\mathrm{N}} 1$ mechanism if consistent with $1^{\text {st }}$ order reaction in (a)(v)

Accept $\mathrm{CH}_{3} \mathrm{C}^{+}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}+\mathrm{H}^{+}$
Allow $S_{N} 2$ mechanism consequential on $2^{\text {nd }}$ order rate equation in (a)(v):
$\mathrm{OH}-$ attacks $\mathrm{C}-\mathrm{Br}$ forming
$\mathrm{C}-\mathrm{OH}$ as $\mathrm{C}-\mathrm{Br}$ breaks to form Br^{-}, Or can be shown in diagram, e.g. with transition state using dotted bonds or with curly arrows in one concerted step (max 2)
(b) 1-bromobutane is a primary halogenoalkane /

2-bromo-2-methylpropane is a tertiary halogenoalkane (1)
Primary carbonium ion intermediate cannot easily be stabilised / tertiary carbonium ion intermediate can be stabilised (1)

Mark independently

Accept arguments based on relative activation energies of formation of primary vs tertiary carbonium ion intermediates / steric hindrance in the tertiary compound
25. (a) (i) second order (1)
rate proportional to the square of the (partial) pressure of NO
OR
the rate doubles as the square of the (partial) pressure of NO doubles (1)
Conditional on correct order
(ii) as (partial) pressure (of O_{2}) doubles rate doubles, so first order

Accept concentration of O_{2} instead of (partial) pressure
OR
gradient of line is $k p\left(\mathrm{O}_{2}\right)^{\mathrm{x}}$ so if this doubles the order (w.r.t. O_{2}) must be 1
(iii) rate $=k p\left(\mathrm{NO}^{2} p\left(\mathrm{O}_{2}\right)\right.$

Accept rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.$
Reject any equation without k
Cq on orders in (i) and (ii)
Accept " R " for "rate"
Accept " K " for lower case " k "
Reject rate $=k$
Reject $p\left[\mathrm{NO}^{2} \mathrm{p}\left[\mathrm{O}_{2}\right]\right.$
(iv) $\mathrm{atm}^{-2} \mathrm{~s}^{-1}$

ALLOW this mark, even if p [] used in (iii)
Cq on (iii)
[if overall second order, unit is $\mathrm{atm}^{-1} \mathrm{~s}^{-1}$.
If overall first order unit is s^{-1}]
Accept mol ${ }^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ if concs used in (iii)
(b) (i) plot $\ln k$ vs $1 / \mathrm{T}$ (1)
giving straight line of gradient - Ea/R
OR
$E_{a}=-$ gradient $\times \mathrm{R}(\mathbf{1})$
STAND ALONE MARKS
[$2^{\text {nd }}$ mark could be scored from (ii) if no reference to gradient here in (i) provided a clear expression is stated]

If plot $1 / T$ vs $\ln k$ and gradient is $-R / E_{a}$ (2)
If plot $\ln k$ vs $1 / R T$ and gradient $-E_{a}$ (2)
Reject"log"
(ii) $E_{a}=2.95 \times 10^{4} \times 8.314$ (1)
$\left(=245,145 \mathrm{~J} \mathrm{~mol}^{-1}\right)$
$=245\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
Accept 245,000 J (mol^{-1}) (2)
[Note to examiners:
give credit if candidate uses 2.95×10^{-4} or $1 / 2.95 \times 10^{4}$]
Correct answer with no working (2)
Answers not to 3 SF can only score the $1^{\text {st }}$ mark
Note:
$-245\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$ but must be 3SF
$245,000 \mathrm{~kJ}_{\left(\mathrm{mol}^{-1}\right)}$ (1) but must be 3SF
$-245,000 \mathbf{k J ~ m o l}^{-1} \mathbf{(0)}$
If 245 or -245 is given, units are not needed
If 245,000 is given, units are essential
DO NOT PENALISE $\mathrm{K}^{-2} \mathrm{OR} \mathrm{K}^{-1}$ in any unit
(iii) B 1
26. (i) $\mathbf{1}^{\text {st }}$ Mark
$\mathrm{S}_{\mathrm{N}} 1$
Or
must be (at least) two steps (1)
$2^{\text {nd }}$ Mark
only the halogenoalkane is involved in the r.d.s.
OR
CN^{-}is not involved in rds (1)
(ii)

first arrow must start from bond, not the carbon atom and not end past the bromine atom (1)
structure of carbocation (1) Br^{-}not essential
attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion;
lone pair not essential (1)
IGNORE any references to rates of the steps 3
Accept completely correct $S_{N} 2$ version scores (1)
Acceptable $S_{N} 2$

27. (a) Any three from

Reject dilatometry

- Titrate with (sodium) thiosulphate to measure concentration of I_{2}.

Reject Γ

- Titrate with an alkali/base (eg sodium hydroxide) to measure concentration of H^{+}/acid.

IGNORE indicators unless inappropriate e.g. starch

- Titrate with silver ions to measure I^{-}
- Measure colour change (colorimetry) as iodine is coloured [colour changes not needed]

Accept addition of starch to give colour
If incorrect colours given, then no mark. Benedict's solution to give colour

- Use pH (meter) to measure H^{+}/acidity
- Measure conductivity as (2) ions on RHS

Reject electrolysis
IGNORE any reference to quenching
Reject measure volume of hydrogen
(b) Add sodium (hydrogen)carbonate (1)

Reject alkali/base/sodium hydroxide
which neutralises/reacts with/removes the H^{+}(1)
Accept ice/ice-cold water to slow the reaction max 1
Reject cold water
$2^{\text {nd }}$ mark awarded only if an alkali added
(c) (i) First order (1)

In exp 2 and exp 3 / concentrations of iodine and H^{+}remain constant (1)
Could compare experiments 1 and 3
propanone concentration increases by 1.5 times and the rate also increases by 1.5 times (1)
$\begin{array}{cc}\text { (ii) Zero (order) } / 0 \text { (order) } & 1 \\ \text { Accept Zeroth (order) } & \end{array}$
(iii) Rate $=\mathrm{k}\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$

ALLOW TE from (i) and (ii)

IGNORE state symbols
Accept rate $=k\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{I}_{2}\right]^{0}$
Accept " R " or " r " for rate
Accept " K " for "rate constant"
(iv) H^{+}and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

IGNORE state symbols 1
Accept Names, [], displayed formula
ALLOW TE from rate equation in (iii)
(v) $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{OHCH}_{3}$ (1)
"+" can appear anywhere on formula
" + " sign must appear on the product for the $1^{\text {st }}$ mark
The (positive) hydrogen ion is attracted to the lone pair of electrons / δ^{-}on the oxygen atom (in the propanone). (1)

No TE from earlier parts
28. (a) D 1
(b) A 1
(c) B
(d) A 1
29. D
30. D
31. (a) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Accept state symbols omitted
(b) (i) Positive because a gas is given off (1) which is more disordered and so has more entropy (1)
(ii) Positive because the reaction is exothermic (1)
and $=-\Delta H / T(1)$
(iii) Positive because the reaction occurs / total entropy change is the sum of the two positive values above.
(c) (i) Surface coated with magnesium oxide (which would react to form water rather than hydrogen).
(ii) QWC

Initial number of moles of $\mathrm{HCl}=20 \times 1 / 1000=0.02$
Number of moles of $\mathrm{Mg}=0.1 / 24=0.00417$ (1) number of moles of HCl which reacts is 0.00834 (1)

Therefore number of moles of HCl left $=0.01166$ (1) Ignore sig figs
so the concentration nearly halves which would significantly reduce the rate and so make the assumption that the initial rate is proportional to $1 /$ time invalid / inaccurate. (1)
Increase the volume of acid to (at least) $50 \mathrm{~cm}^{3}$ (1)
Or measure the time to produce less than the full amount of gas Or use a smaller piece of magnesium. (1)
(iii) Energy given out $=467000 \times 0.1 / 24 \mathrm{~J}=1946 \mathrm{~J}$
$20 \times 4.18 \times \Delta \mathrm{T}=1946$ (1)
$\Delta \mathrm{T}=23.3^{(\mathrm{o})} \mathbf{(1)}$
Accept units of degrees celsius or Kelvin
This temperature change would significantly increase the rate of the reaction (1)
Carry out the reaction in a water bath of constant temperature/use a larger volume of more dilute acid (1)
(iv) At 329 time $4 \mathrm{~s} 1 /$ time $=0.25 \mathrm{~s}^{-1} \ln$ (rate) $=-1.39$ (1)

At 283 time 124s $1 /$ time $=0.00806 \mathrm{~s}^{-1} \ln ($ rate $)=-4.82(\mathbf{1})$ [graph to be drawn]

Plot line with new gradient $=-3.43 / 0.00049$

$$
=-7000(\mathbf{1})
$$

Accept -6800 to -7200
Activation energy $=+7000 \times 8.31$

$$
=+58.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}
$$

(v) QWC

Rate of reaction reduced because less surface area in contact with the acid. (1)
(vi) Any two

- Repeat the experiment at each of the temperatures
- obtain an initial rate eg by measuring the volume of gas given off before the reaction is complete.
- Other sensible suggestions.
(vii) The rate should be lower, since ethanoic acid is a weaker acid
(compared to hydrochloric acid) and so there will be a lower concentration of hydrogen ions present.

32. QWC

Answer must be given in a logical order, addressing all the points using precise terminology

- Collision frequency increases as particles moving more quickly (1)
- More collisions have sufficient energy to overcome activation energy / more molecules on collision have energy \geq activation energy (1)
- A greater proportion of collisions result in reaction (1)
- Collision energy has greater effect (1)
- Homogeneous all in same phase and heterogeneous in different phases / gas and solid (1)
- No need to separate products from catalyst (1)

