Question Number	Acceptable Answers	Reject	Mark
1(a)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$ OR $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ ALLOW capital S P D Allow subscripts (e.g. $\left.\left(1 s^{2}\right) 2 s_{2} 2 p_{6} 3 s_{2} 3 p_{6} 4 s_{2} 3 d_{8}\right)$		1

Question Number	Acceptable Answers	Reject	Mark
1(b)	$\left(\mathrm{A}_{\mathrm{r}}\right.$ for Ni$)=(58 \times 0.6902)+(60 \times$ $0.2732)+(62 \times 0.0366)$ or a correct fraction using percentages (=58.6928) [calculator value] $=58.69$ (must be to $\mathbf{2 ~ d p}$) $2^{\text {nd }}$ mark CQ on numbers transcribed Correct answer with no working IGNORE Units of any kind (e.g. ' g^{\prime}, ' $\mathrm{g} \mathrm{mol}^{-1}$, 'amu', etc.)	58.68 (as rounding error)	2

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	$\begin{align*} & \begin{array}{l} \text { Moles of nickel }=\frac{5.87}{58.7} \\ \\ =0.1(00)(\mathrm{mol}) \end{array} \\ & \begin{array}{l} \text { Moles CO }=0.1(00) \times 4=0.4(00) \\ (\mathrm{mol}) \end{array} \tag{1} \end{align*}$ Answer CQ on $4 \times \mathrm{mol} \mathrm{Ni}$ Volume of $\mathrm{CO}=0.4(00) \times 24\left(\mathrm{dm}^{3}\right)$ $=9.6\left(\mathrm{dm}^{3}\right)$ ALLOW 9600 cm 3 Answer CQ on $24 \times \mathrm{mol}$ CO Correct answer with no working scores	$9.6 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ (no $3^{\text {rd }}$ mark) $9.6 \mathrm{dm}^{-3}$ (no $3^{\text {rd }}$ mark) OR Any other incorrect units (no $3^{\text {rd }}$ mark)	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i)}$	(Number of CO molecules		$\mathbf{1}$
	$=0.400 \times 6.02 \times 10^{23}$)		
$=2.408 \times 10^{23}$			
Answer CQ on moles / volume of CO in (c)(i) IGNORE sf except 1 sf IGNORE Any units, even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)	$\begin{align*} & \text { Moles of } \mathrm{NiO} \quad=\frac{1.494}{74.7} \\ & \tag{1}\\ & =0.02(00)(\mathrm{mol}) \end{align*}$ Answer CQ on $2 \times \mathrm{mol} \mathrm{NiO}$ Volume of $\mathrm{HNO}_{3}=\frac{0.04(00) \times 1000}{2.00}$ $=20(.0)\left(\mathrm{cm}^{3}\right)$ ALLOW $0.02(00)$ dm 3 Answer CQ on mol HNO_{3} Correct answer with no working scores Penalise wrong units ONCE only		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d) (i i)}$	To ensure all the acid reacts / all the acid is used up / all the acid is neutralized IGNORE References to 'yield' / reaction going to completion / just 'acid is the limiting reagent'	To ensure all the reactants are used up	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d) (i i i)}$	Fizzing / effervescence / frothing / bubbles / gas released	(Mixture) boils	$\mathbf{1}$
IGNORE spilling (over) / spillage References to 'vigorous', 'exothermic', 'violent' / just 'safety'	Quantity of reagents / 'displacement' of solution on adding solid		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 1(d) } \\ & \text { (iv) } \end{aligned}$	$\mathrm{NiCO}_{3}(\mathbf{s})+2 \mathrm{HNO}_{3}(\mathbf{a q}) \rightarrow \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}(\mathbf{a q})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathbf{g})$ ALLOW correct ionic equation $\mathrm{NiCO}_{3}(\mathbf{s})+2 \mathrm{H}^{+}(\mathbf{a q}) \rightarrow \mathrm{Ni}^{2+}(\mathbf{a q})+\mathrm{H}_{2} \mathrm{O}(\mathbf{I})+\mathrm{CO}_{2}(\mathbf{g})$ All species correct Balancing and all state symbols correct 2nd mark is dependent on 1st mark (ie all species correct)	$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ scores (0) overall	2

Question Number	Acceptable Answers	Reject	Mark
* 1(d)(v)	First mark: Filter (off the excess nickel(II) carbonate / solid) Second mark: Boil / heat (to drive off some of the water) I GNORE just 'evaporation' (as the technique of boiling / heating is required here) Third mark: Leave to cool / leave to crystallize / evaporate (water) slowly / leave (for water) to evaporate Fourth mark: Dry (the crystals) IGNORE Any washing of the crystals immediately prior to drying them NOTE If heat to dryness in the second stage, award (1) mark if filtration is first stage If filtration is not the first stage, award (1) mark for steps 2, 3 and 4 all correct	J ust "warm" the filtrate / solution OR 'heat the filtrate to dryness' (Adding to a) drying agent Use of Bunsen burner or direct heating to dry crystals	4

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	$\begin{equation*} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})=\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+} \tag{1} \end{equation*}$ ALLOW $\mathrm{Cr}^{3+}(\mathrm{aq}) / \mathrm{Cr}^{3+}$ $\mathrm{A}=\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3} \quad / \mathrm{Cr}(\mathrm{OH})_{3}$ $\begin{equation*} \mathrm{B}=\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}^{-} / \mathrm{Cr}(\mathrm{OH})_{4}^{-} / \mathrm{Cr}(\mathrm{OH})_{6}{ }^{3-} \tag{1} \end{equation*}$ $\begin{equation*} \mathrm{C}=\mathrm{CrO}_{4}{ }^{2-} \tag{1} \end{equation*}$ IGNORE $\mathrm{SO}_{4}{ }^{2-}$ and/or $\mathrm{Na}+$		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i i)}$	$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{OH}^{-}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	Sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$		$\mathbf{1}$
	ALLOW Name or formula of any strong acid (e.g. HCl$)$		
	IGNORE H^{+}and 'an acid' Dilute or concentrated		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i v)}$	$2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW Equation showing Na^{+}and anion on both sides IGNORE State symbols even if incorrect	Non-ionic equations	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(b)	First mark for both half equations Mentions / some evidence for the use of BOTH half equations in any way even if reversed or left unbalanced $\begin{align*} & \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq}) \quad\left(\mathrm{E}^{\ominus}=-0.41 \mathrm{~V}\right) \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \\ & \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad\left(\mathrm{E}^{\ominus}=+1.33 \mathrm{~V}\right) \tag{1} \end{align*}$ Second mark for $\begin{equation*} 8 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 6 \mathrm{Cr}^{2+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq}) \tag{1} \end{equation*}$ Third mark for $\mathrm{E}_{\text {cell }}^{\ominus}=-0.41-1.33=-1.74(\mathrm{~V})$ For second and third marks, ALLOW reverse equation and $E^{\ominus}{ }_{\text {cell }}=+1.74(\mathrm{~V})$ (for reverse reaction) ALLOW 1.74 (V) only if 'positive' stated in words elsewhere Fourth mark for EITHER Disproportionation / (proposed) reaction / "it is" not feasible (because its E^{\ominus} cell is negative) OR Reverse of disproportionation is feasible (because its E^{\ominus} cell is positive) IGNORE state symbols even if incorrect ALLOW \rightleftharpoons instead of \rightarrow Third and fourth marks can be awarded CQ on incorrect half equation(s) and stated E^{\ominus} values		4

Question Number	Acceptable Answers	Reject	Mark
3 (a)	```A = copper(II) hydroxide \(/ \mathrm{Cu}(\mathrm{OH})_{2} /\) \(\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\) B \(=\) copper(II) oxide \(/ \mathrm{CuO}\) \(\mathbf{C}=\) tetraamminecopper(II) \(/ \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+} /\) \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}\) ALLOW Cu(\(\left.\mathrm{NH}_{3}\right)_{6}{ }^{2+}\) / hexaamminecopper(II) D = copper / Cu / copper(0) / Cu(0) \(\mathbf{E}=\) copper(II) sulfate \(/ \mathrm{CuSO}_{4} / \mathrm{Cu}^{2+} /\) \(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}\) \\ \(\mathbf{F}=\) diamminecopper \((\mathrm{I}) / \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\)``` ALLOW coordination numbers 1-6 in \mathbf{F} Oxidation number separate from name IGNORE state symbols even if incorrect names without oxidation numbers except for \mathbf{D}	Formulae with incomplete or unbalanced charges Incorrect oxidation states even with correct formulae	6

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) ~}$	(Dilute) sulfuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ ALLOW concentrated		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) (i) ~}$	(transition metal / d-block element) complex(es) /complex ion(s) IGNORE ammines	Complex molecules amines, ions, ligands	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	Copper ion in C has partially filled d orbital(s) / subshell / 3d ${ }^{9}$ ALLOW unpaired d electron d shell Copper ion in \mathbf{F} has (completely) filled \mathbf{d} orbitals / subshell / 3d ${ }^{10}$ Reference to complete / incomplete d orbitals max 1 EITHER Electronic transitions between partially filled (d) orbitals (of different energy) are possible OR Electronic transitions between (completely) filled (d) rbitals (of different energy) are not possible ALLOW Equivalent words for transition e.g. promotion / jump / movement Penalise use of just 'shell' once IGNORE references to electrons returning to lower energy levels and emission of light	d orbitals empty no unpaired electrons (in F) orbital (singular) Splitting impossible because d orbitals full	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	Copper(I) is oxidized (to copper(II))	(1)	
$\mathbf{(c) (i i i)}$	ALLOW F / it is oxidized By oxygen / air Second mark depends on first IGNORE 'shaking'	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (d) (i)}$	(simultaneous) oxidation and reduction (1) OR Simultaneous increase or decrease in oxidation number of an element ALLOW 'Species' 'atoms of the same type' for 'element' Explanation in terms of copper(I)	molecule	

Question	Acceptable Answers	Reject	Mark
Number			
$\mathbf{3}$	$2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}$	Non-ionic equations	$\mathbf{1}$
$\mathbf{(d) (i i)}$	OR		
	$2 \mathrm{CuI}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+} \mathrm{Cu}^{2+}+2 \mathrm{HI}$		
	OR		
	$2 \mathrm{CuI} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+2 \mathrm{I}^{-}$		
IGNORE state symbols even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 3 \\ & (d)(i i i) \end{aligned}$	ALLOW The use of cell notation (as in the Data Booklet SEP table) in place of equations $\text { e.g. } \mathrm{Cu}^{+}(\mathrm{aq}) \mid \mathrm{Cu}(\mathrm{~s}) \mathrm{E}^{\ominus}=+0.52(\mathrm{~V})$ (from the data book the equations are) $\begin{align*} & \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \mathrm{E}^{\ominus}=+0.52(\mathrm{~V}) \\ & \mathrm{Cu}^{++}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq}) \mathrm{E}^{\ominus}=+0.15(\mathrm{~V}) \tag{1}\\ & \mathrm{So} \mathrm{E}^{\ominus} \text { cell }=0.52-0.15=+0.37(\mathrm{~V}) \tag{1} \end{align*}$ Correct answer including sign with no working scores full marks TE for second mark for use of $\mathrm{Cu}^{2+} \mathrm{ICu}+0.34(\mathrm{~V})$ which gives $+0.19(\mathrm{~V}) /+0.18(\mathrm{~V})$ No TE on incorrect equation in (d)(ii)	Answer without + sign	2

Question Number	Acceptable Answers	Reject	Mark
3 (d) (iv)	ALLOW In both schemes the use of cell notation (as in the Data Booklet SEP table) in place of equations $\text { e.g. } \mathrm{Cu}^{2+}(\mathrm{aq}) \mid \mathrm{Cu}(\mathrm{~s}) \quad \mathrm{E}^{\ominus}=+0.34(\mathrm{~V})$ Penalise omission of electrons from equations and vertical lines from cell diagrams and reversal of equation without reversing sign. once only IGNORE omission of + sign for all E^{\ominus} values Scheme 1 (oxidation of copper) Copper (formed (by disproportionation)) is oxidized (by nitric acid) must be stated in words stand alone mark Relevant half equations are $\begin{align*} & \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \quad \mathrm{E}^{\ominus}=+0.34(\mathrm{~V}) \text { (1) } \tag{1}\\ & 2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.80(\mathrm{~V}) \\ & \mathrm{OR}^{-} \\ & \mathrm{NO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.94(\mathrm{~V}) \end{align*}$ Correct overall equation scores both marks: $\begin{aligned} & \mathrm{Cu}+2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \\ & \mathrm{Cu}+\mathrm{NO}_{3}^{-}+3 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ So E^{\ominus} cell is $+0.46(\mathrm{~V})($ or $+0.60(\mathrm{~V})$ or just 'positive') Scheme 2 (oxidation of copper(1) Copper(I) iodide / Cu^{+}is oxidized (by nitric acid) must be stated in words stand alone mark $\begin{align*} & \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq}) \mathrm{E}^{\ominus}=+0.15(\mathrm{~V}) \tag{1}\\ & 2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.80(\mathrm{~V}) \\ & \mathrm{OR}^{2} \\ & \mathrm{NO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.94(\mathrm{~V}) \end{align*}$ Correct overall equation scores both marks:		4

| | $2 \mathrm{Cu}^{+}+2 \mathrm{NO}_{3}^{--}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cu}^{2+}+\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ | |
| :--- | :--- | :--- | :--- |
| $2 \mathrm{Cu}^{+}+\mathrm{NO}_{3}^{-}+3 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cu}^{2+}+\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O}$ | | |
| | So E E^{\ominus} cell is $+0.65(\mathrm{~V})($ or $+0.79(\mathrm{~V})$ or just
 'positive')
 IGNORE
 (omission of) state symbols even if incorrect | |

Question Number	Acceptable Answers	Reject	Mark
4 (a) (i)	(Ligands cause) d orbitals / sub-shell / sub level to split (1) Some frequencies of light (energy) are absorbed (1)	Description of flame test	$\mathbf{3}$
	To promote electrons (within d level / d \rightarrow d (1) transitions) ALLOW as alternative for second mark Remaining light is transmitted / reflected (resulting in the colour seen) Mark independently		

Question Number	Acceptable Answers	Reject	Mark
4 (a) (ii)	Concentrated $\mathrm{HCl} / \mathrm{HCl} / \mathrm{HCl}(\mathrm{aq)}$ (1) Ligand exchange / replacement / substitution (1) Mark independently	Dilute HCl	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
4 (b) (i)	$\begin{equation*} \left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} \tag{1} \end{equation*}$ (1) ALLOW $\begin{equation*} \left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \tag{1} \end{equation*}$ (1) ALLOW second mark for number of $\mathrm{H}_{3} \mathrm{O}^{+}$ions related to incorrect complex e.g. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{2+}+2 \mathrm{H}_{3} \mathrm{O}^{+}$scores second mark Ignore state symbols even if wrong		2

Question Number	Acceptable Answers	Reject	Mark		
4 (b) (ii)	The concentration of oxonium / hydrogen ions is less in the $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+} /\right.$ fewer hydrogen ions produced or reverse argument based on Cr ion (1) ALLOW $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} /$ chromium ion deprotonates more easily if $\mathrm{H}_{3} \mathrm{O}^{+}$shown in equation in (b) (i)	Just chromium complex more acidic The concentration of oxonium / hydrogen ions is greater in the $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} /$ more hydrogen ions produced	2		
	Because copper ion is 2+ whilst the chromium ion is 3+ / charge on copper ion is less than charge on Cr ion / less charge density on 2+ ions / $\mathrm{Cr}(3+)$ draws more electron density from the $\mathrm{O}-\mathrm{H}$ bond (1)	Ligand exchange		\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$4(\mathrm{c})$	$\mathrm{Cr}(\mathrm{OH})_{3} / \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4 (d)	NaOH is a (strong) base / alkali $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ loses (three) protons / undergoes further deprotonation OR $\mathrm{Cr}(\mathrm{OH})_{3}$ is amphoteric (so reacts with strong bases) To reverse reaction 4 add (sulfuric) acid $/ \mathrm{H}^{+} /$ HCl	Chromium is amphoteric	3

Question Number	Acceptable Answers	Reject	Mark
4(e)	$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\left(\right.$ edta $4^{4-} \rightarrow[\mathrm{Cr}(\text { edta })]^{-}+6 \mathrm{NH}_{3} \quad$ (1) lgnore missing brackets Ignore state symbols even if wrong	$\mathbf{2}$	
	During the reaction number of particles increases (2 to 7) / more moles of product than reactants AND entropy (of system) increases	Entropy increases because a gas is produced only Just more products than reactants	

