Question Number	Acceptable Answers	Reject	Mark
1(a)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ² OR (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸ ALLOW capital S P D Allow subscripts (e.g. (1s ²) 2s ₂ 2p ₆ 3s ₂ 3p ₆ 4s ₂ 3d ₈)		1

Question Number	Acceptable Answers	Reject	Mark
1(b)	$(A_r \text{ for Ni}) = (58 \times 0.6902) + (60 \times 0.2732) + (62 \times 0.0366) \text{ or a correct}$ fraction using percentages (1)		2
	(= 58.6928) [calculator value]		
	= 58.69 (must be to 2 dp) (1)	58.68 (as rounding error)	
	2 nd mark CQ on numbers transcribed		
	Correct answer with no working		
	(2)		
	IGNORE Units of any kind (e.g. 'g', 'g mol ⁻¹ , 'amu', etc.)		

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	Moles of nickel = $\frac{5.87}{58.7}$		3
	= 0.1(00) (mol) (1)		
	Moles $CO = 0.1(00) \times 4 = 0.4(00)$ (mol)		
	Answer CQ on 4 x mol Ni (1)		
	Volume of CO = $0.4(00) \times 24 (dm^3)$	9.6 dm ³ mol⁻¹ (no 3 rd mark)	
	$= 9.6 (dm^3)$	9.6 dm ⁻³ (no 3 rd mark)	
	ALLOW 9600 cm³	OR Any other incorrect units	
	Answer CQ on 24 x mol CO (1)	(no 3 rd mark)	
	Correct answer with no working scores (3)		

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	(Number of CO molecules		1
	$= 0.400 \times 6.02 \times 10^{23})$		
	$= 2.408 \times 10^{23}$		
	Answer CQ on moles / volume of CO in (c)(i)		
	IGNORE sf except 1 sf		
	IGNORE Any units, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)	Moles of NiO = $\frac{1.494}{74.7}$ = 0.02(00) (mol) (1)		3
	Moles $HNO_3 = 0.02(00) \times 2 = 0.04(00)$ (mol)		
	Answer CQ on 2 x mol NiO (1)		
	Volume of $HNO_3 = \frac{0.04(00) \times 1000}{2.00}$ = 20(.0) (cm ³)		
	ALLOW 0.02(00) dm³		
	Answer CQ on mol HNO ₃ (1)		
	Correct answer with no working scores (3)		
	Penalise wrong units ONCE only		

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	To ensure all the acid reacts / all the acid is used up / all the acid is neutralized IGNORE References to 'yield' / reaction going to completion / just 'acid is the limiting reagent'	To ensure all the reactants are used up	1

Question Number	Acceptable Answers	Reject	Mark
1(d)(iii)	Fizzing / effervescence / frothing / bubbles / gas released IGNORE spilling (over) / spillage References to 'vigorous', 'exothermic', 'violent' / just 'safety'	(Mixture) boils Quantity of reagents / 'displacement' of solution on adding solid	1

Question Number	Acceptable Answers	Reject	Mark
1(d) (iv)	NiCO ₃ (s) + 2HNO ₃ (aq) → Ni(NO ₃) ₂ (aq) + H ₂ O(I) +CO ₂ (g) ALLOW correct ionic equation NiCO ₃ (s) + 2H ⁺ (aq) → Ni ²⁺ (aq) + H ₂ O(I) +CO ₂ (g)	H ₂ CO ₃ (aq) scores (O) overall	2
	All species correct (1)		
	Balancing and all state symbols correct (1)		
	2nd mark is dependent on 1st mark (ie all species correct)		

Question	Acceptable Answers	Reject	Mark
Number *1(d)(v)	First mark: Filter (off the excess nickel(II) carbonate / solid) (1)		4
	Second mark: Boil / heat (to drive off some of the water) (1)	Just "warm" the filtrate / solution OR 'heat the filtrate to	
	IGNORE just 'evaporation' (as the technique of boiling / heating is required here)	dryness'	
	Third mark:Leave to cool / leave to crystallize /evaporate (water) slowly / leave (forwater) to evaporate(1)		
	Fourth mark:Dry (the crystals)(1)	(Adding to a) drying agent	
	IGNORE Any washing of the crystals immediately prior to drying them	Use of Bunsen burner or direct heating to dry crystals	
	NOTE If heat to dryness in the second stage, award (1) mark if filtration is first stage		
	If filtration is not the first stage, award (1) mark for steps 2, 3 and 4 all correct		

(Total for Question = 18 marks)

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	$Cr_2(SO_4)_3(aq) = Cr(H_2O)_6^{3+}$ ALLOW $Cr^{3+}(aq) / Cr^{3+}$ (1)		4
	$A = Cr(H_2O)_3(OH)_3 / Cr(OH)_3 $ (1)		
	$B = Cr(H_2O)_2(OH)_4^- / Cr(OH)_4^- / Cr(OH)_6^{3-}$ (1)		
	$C = CrO_4^{2-}$ (1)		
	IGNORE SO_4^{2-} and/or Na+		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	$H_2O_2 + 2e^{(-)} \rightarrow 2OH^-$		1

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	Sulfuric acid / H ₂ SO ₄ ALLOW Name or formula of any strong acid (e.g. HCI) IGNORE H ⁺ and 'an acid' Dilute or concentrated		1

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	$2CrO_4^{2^-} + 2H^+ \rightarrow Cr_2O_7^{2^-} + H_2O$ ALLOW Equation showing Na ⁺ and anion on both sides IGNORE State symbols even if incorrect	Non-ionic equations	1

Question Number	Acceptable Answers	Reject	Mark
2(b)	First mark for both half equations Mentions / some evidence for the use of BOTH half equations in any way even if reversed or left unbalanced		4
	$Cr^{3+}(aq) + e^{-} \rightarrow Cr^{2+}(aq) (E^{e} = -0.41 \text{ V})$		
	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$ $\rightarrow 2Cr^{3+}(aq) + 7H_2O(I) (E^{e} = +1.33 V)$ (1)		
	Second mark for $8Cr^{3+}(aq) + 7H_2O(I) \rightarrow 6Cr^{2+}(aq) + Cr_2O_7^{2-}(aq) + 14H^+(aq)$ (1)		
	Third mark for $E_{cell}^{\Theta} = -0.41 - 1.33 = -1.74$ (V)		
	For second and third marks , ALLOW reverse equation and $E^{e}_{cell} = +1.74$ (V) (for reverse reaction) (1)		
	ALLOW 1.74 (V) only if 'positive' stated in words elsewhere		
	Fourth mark for		
	EITHER		
	Disproportionation / (proposed) reaction / "it is" not feasible (because its <i>E</i> ^e _{cell} is negative)		
	OR		
	Reverse of disproportionation is feasible (because its E^{Θ}_{cell} is positive) (1)		
	IGNORE state symbols even if incorrect		
	ALLOW \Rightarrow instead of \rightarrow		
	Third and fourth marks can be awarded CQ on incorrect half equation(s) and stated <i>E</i> ^e values		

Question Number	Acceptable Answers		Reject	Mark
3 (a)		(1) (1)	Formulae with incomplete or unbalanced charges	6
	ALLOW $Cu(NH_3)_6^{2+}$ / hexaamminecopper(II) D = copper / Cu / copper(0) / Cu(0) E = copper(II) sulfate / CuSO ₄ / Cu ²⁺ / Cu(H ₂ O) ₆ ²⁺ F = diamminecopper(I) / Cu(NH ₃) ₂ ⁺ ALLOW coordination numbers 1-6 in F Oxidation number separate from name	 (1) (1) (1) (1) 	Incorrect oxidation states even with correct formulae	
	IGNORE state symbols even if incorrect names without oxidation numbers except for	r D		

Question Number	Acceptable Answers	Reject	Mark
3 (b)	(Dilute) sulfuric acid / H ₂ SO ₄ / H ₂ SO ₄ (aq) ALLOW concentrated		1

Question Number	Acceptable Answers	Reject	Mark
3 (c)(i)	(transition metal / d-block element) complex(es) /complex ion(s) IGNORE ammines	Complex molecules amines, ions, ligands	1

Question	Acceptable Answers	Reject	Mark
Number			
3 (c) (ii)	Copper ion in C has partially filled d orbital(s) / subshell / 3d ⁹	d orbitals empty	3
	ALLOW		
	unpaired d electron		
	d shell (1)	no unpaired	
	Copper ion in F has (completely) filled d orbitals / subshell / 3d ¹⁰ (1)	electrons (in F) orbital	
	Reference to complete / incomplete d orbitals max 1	(singular)	
	EITHER Electronic transitions between partially filled (d) orbitals (of different energy) are possible OR Electronic transitions between (completely) filled (d) rbitals (of different energy) are not possible (1) ALLOW Equivalent words for transition e.g. promotion / jump / movement	Splitting impossible because d orbitals full	
	Penalise use of just 'shell' once IGNORE references to electrons returning to lower energy levels and emission of light		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iii)	Copper(I) is oxidized (to copper(II))ALLOW F / it is oxidized(1By oxygen / air(1Second mark depends on firstIGNORE'shaking'(1	-	2

Question Number	Acceptable Answers		Reject	Mark
3 (d)(i)	(simultaneous) oxidation and reduction OR Simultaneous increase or decrease in oxida number of an element ALLOW 'Species' 'atoms of the same type' for 'elem Explanation in terms of copper(I) IGNORE Atom / ion / compound / substance / react	(1) nent'	molecule	2

Question Number	Acceptable Answers	Reject	Mark
3 (d)(ii)	$2Cu^{+} \rightarrow Cu + Cu^{2+}$ OR $2CuI + 2H^{+} \rightarrow Cu + Cu^{2+} + 2HI$ OR $2CuI \rightarrow Cu + Cu^{2+} + 2I^{-}$ IGNORE state symbols even if incorrect	Non-ionic equations	1

Question Number	Acceptable Answers	Reject	Mark
3 (d) (iii)	ALLOW The use of cell notation (as in the Data Booklet SEP table) in place of equations e.g. $Cu^+(aq) Cu(s) E^{\theta} = +0.52$ (V) (from the data book the equations are) $Cu^+(aq) + e^- \rightarrow Cu(s) E^{\theta} = +0.52$ (V) $Cu^{2+}(aq) + e^- \rightarrow Cu^+(aq) E^{\theta} = +0.15$ (V) (1) So $E^{\theta}_{cell} = 0.52 - 0.15 = +0.37$ (V) (1) Correct answer including sign with no working scores full marks TE for second mark for use of $Cu^{2+}ICu + 0.34$ (V) which gives $+0.19$ (V) $/+0.18$ (V) No TE on incorrect equation in (d)(ii)	Answer without + sign	2

Question Number	Acceptable Answers	Reject	Mark
3 (d)(iv)	ALLOW In both schemes the use of cell notation (as in the Data Booklet SEP table) in place of equations e.g. $Cu^{2+}(aq) Cu(s) = E^{e} = +0.34$ (V)		4
	Penalise omission of electrons from equations and vertical lines from cell diagrams and reversal of equation without reversing sign. once only		
	IGNORE omission of + sign for all E ^e values		
	Scheme 1 (oxidation of copper)		
	Copper (formed (by disproportionation)) is oxidized(by nitric acid) must be stated in wordsstand alone mark(1)		
	Relevant half equations are $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) E^{\theta} = +0.34 \text{ (V)} \text{ (1)}$		
	$2NO_3^-(aq) + 4H^+(aq) + 2e^- \rightarrow N_2O_4(g) + 2H_2O(I)$ $E^{\circ} = +0.80 \text{ (V)}$ OR		
	$NO_3^{-}(aq) + 3H^{+}(aq) + 2e^{-} \rightarrow HNO_2(aq) + H_2O(I)$ $E^{\theta} = +0.94$ (V) (1)		
	Correct overall equation scores both marks:		
	Cu + 2 NO ₃ ⁻ + 4H ⁺ → Cu ²⁺ + N ₂ O ₄ + 2H ₂ O OR Cu + NO ₃ ⁻ + 3H ⁺ → Cu ²⁺ + HNO ₂ + H ₂ O		
	So <i>E</i> ^e _{cell} is +0.46 (V) (or +0.60 (V) or just 'positive') (1)		
	Scheme 2 (oxidation of copper(I)		
	Copper(I) iodide / Cu ⁺ is oxidized (by nitric acid) must be stated in words (1)		
	stand alone mark		
	$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq) E^{\theta} = +0.15 (V)$ (1)		
	$2NO_{3}^{-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow N_{2}O_{4}(g) + 2H_{2}O(I)$ $E^{\theta} = +0.80 \text{ (V)}$ OR $NO_{3}^{-}(aq) + 3H^{+}(aq) + 2e^{-} \rightarrow HNO_{2}(aq) + H_{2}O(I)$ $E^{\theta} = +0.94 \text{ (V)}$ (1)		
	Correct overall equation scores both marks:		

$2Cu^{+} + 2NO_{3}^{-} + 4H^{+} \rightarrow 2Cu^{2+} + N_{2}O_{4} + 2H_{2}O$ $2Cu^{+} + NO_{3}^{-} + 3H^{+} \rightarrow 2Cu^{2+} + HNO_{2} + H_{2}O$		
So E_{cell}^{θ} is +0.65 (V) (or +0.79 (V) or just 'positive')	(1)	
IGNORE (omission of) state symbols even if incorrec	ct	

Question Number	Acceptable Answers	Reject	Mark
4 (a) (i)	(Ligands cause) d orbitals / sub-shell / sub level to split (1)	Description of flame test	3
	Some frequencies of light (energy) are absorbed (1)		
	To promote electrons (within d level / d \rightarrow d transitions) (1)		
	ALLOW as alternative for second mark		
	Remaining light is transmitted / reflected (resulting in the colour seen)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
4 (a) (ii)	Concentrated HCl / HCl / HCl (aq) (1)	Dilute HCl	2
	Ligand exchange / replacement / substitution (1)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
4 (b) (i)	$\begin{split} & [Cr(H_2O)_6]^{3^+} + H_2O \Rightarrow [Cr(H_2O)_5(OH)]^{2^+} + H_3O^+ \\ & (1) & (1) \\ & \text{ALLOW} \\ & [Cr(H_2O)_6]^{3^+} + H_2O \Rightarrow [Cr(H_2O)_5(OH)]^{2^+} + H_2O + H^+ \\ & (1) & (1) \\ & \text{ALLOW second mark for number of } H_3O^+ \text{ ions} \\ & \text{related to incorrect complex e.g.} \\ & [Cr(H_2O)_4(OH)_2]^{2^+} + 2H_3O^+ \text{ scores second mark} \\ & \text{Ignore state symbols even if wrong} \end{split}$		2

Question Number	Acceptable Answers	Reject	Mark
4 (b) (ii)	The concentration of oxonium / hydrogen ions is less in the $[Cu(H_2O)_6]^{2+}$ / fewer hydrogen ions produced or reverse argument based on Cr ion (1) ALLOW $[Cr(H_2O)_6]^{3+}$ / chromium ion deprotonates more easily if H_3O^+ shown in equation in (b) (i)	Just chromium complex more acidic The concentration of oxonium / hydrogen ions is greater in the $[Cu(H_2O)_6]^{2+}$ / more hydrogen ions produced	2
	Because copper ion is 2+ whilst the chromium ion is 3+ / charge on copper ion is less than charge on Cr ion / less charge density on 2+ ions / Cr (3+) draws more electron density from the O-H bond (1)	Ligand exchange	

Question Number	Acceptable Answers	Reject	Mark
4 (c)	$Cr(OH)_3 / Cr(H_2O)_3(OH)_3$		1

Question Number	Acceptable Answers	Reject	Mark
4 (d)	NaOH is a (strong) base / alkali (1) Cr(H, Q) (QH), losos (three) protons / undergoes	Chromium is	3
	$Cr(H_2O)_3(OH)_3$ loses (three) protons / undergoes further deprotonation	amphoteric	
	OR		
	Cr(OH) ₃ is amphoteric (so reacts with strong bases) (1)		
	To reverse reaction 4 add (sulfuric) acid / H ⁺ / HCl (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (e)	$\begin{array}{l} \left[Cr(NH_3)_6 \right]^{3+} + (edta)^{4^-} \rightarrow \left[Cr(edta) \right]^- + 6NH_3 \mbox{(1)} \\ \mbox{Ignore missing brackets} \\ \mbox{Ignore state symbols even if wrong} \\ \mbox{During the reaction number of particles increases} \\ \mbox{(2 to 7) / more moles of product than reactants} \\ \mbox{AND entropy (of system) increases} \mbox{(1)} \end{array}$	Entropy increases because a gas is produced only Just more products than reactants	2