Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	two marks Cl in Cl_{2} is 0 Goes to +1 in HClO Goes to -1 in HCl All three correct for two marks Any two correct for one mark I gnore correct oxidation numbers for other elements If three correct numbers given without saying what species they are in max 1 for these two marks Third mark $\mathrm{Cl} / \mathrm{Cl}_{2}$ /the same element is both oxidized and reduced Allow same molecule/species/ type of atom is both oxidized and reduced if answer elsewhere has been in terms of chlorine OR $\mathrm{Cl} / \mathrm{Cl}_{2} /$ the same element both increases and decreases in oxidation number OR Chlorine both loses and gains electrons	Only ‘ $\mathrm{Cl}^{\text {+' }}$ for oxidation number $+$ Only ‘ $\mathrm{Cl}^{-‘}$ for oxidation number (treat each separately) For each incorrect oxidation number change for O and H , lose one mark. 0 to +1 described as reduction and/or 0 to -1 described as oxidation (for third mark)	3
Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	Equilibrium moves to the left / moves in reverse direction / moves to increase concentration of reactants To use up (some of) added HCl / to react with added HCl / to stop formation of $\mathrm{HCl} /$ restores equilibrium by producing more chlorine and water Second mark depends on first Allow 'moves to decrease concentration of products/ HCl ' for both marks	Just "reverse reaction is favoured" Just "to counteract the change in the system" To minimise effect of HCl	2

Question Number	Acceptable Answers	Reject	Mark
1(b) (i)	$\mathrm{ClO}^{-}+\mathbf{2} \mathrm{H}^{+}+\mathbf{2} \mathbf{e}^{(-)} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW $\begin{equation*} \mathrm{ClO}^{-}+\mathbf{2} \mathrm{H}^{+} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}-\mathbf{2} \mathbf{e}^{(-)} \tag{1} \end{equation*}$ $\mathbf{2 l}^{-} \rightarrow \quad \mathrm{I}_{2}+\mathbf{2} \mathbf{e}^{(-)}$ ALLOW $\begin{equation*} \mathbf{2 l}^{-}-\mathbf{2} \mathbf{e}^{(-)} \quad \rightarrow \quad \mathrm{I}_{2} \tag{1} \end{equation*}$ Allow multiples Ignore state symbols even if incorrect	Equations without electrons	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	$\mathrm{ClO}^{-}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$	Equations including electrons	$\mathbf{1}$
	Mark independently. No TE on 21(b)(i)		

Question Number	Acceptable Answers	Reject	Mark
1(b) (iii)	$\begin{aligned} & \text { Moles thiosulfate }=(24.20 \times 0.0500 / \\ & 1000)= \\ & 1.21 \times 10^{-3} / 1.2 \times 10^{-3} / 0.00121 / 0.0012 \\ & (\mathrm{~mol}) \end{aligned}$ Moles iodine $=$ half moles of thiosulfate $=6.05 \times 10^{-4} / 6.1 \times 10^{-4} / 0.000605 /$ $\begin{equation*} 0.00061 \text { (mol) } \tag{1} \end{equation*}$ Correct answer without working	$\begin{aligned} & 1.20 \times 10^{-3}(\mathrm{~mol}) \\ & 1 \times 10^{-3} / 0.001 \\ & \\ & 6.0 \times 10^{-4}(\mathrm{~mol}) \\ & 6 \times 10^{-4}(\mathrm{~mol}) \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (\text { iv) }}$	Moles $\mathrm{ClO}^{-}=6.05 \times 10^{-4}(\mathrm{~mol})$		
TE on (b)(ii) and (b)(iii):			
	If ratio $\mathrm{ClO}^{-}: \mathrm{I}_{2}=2: 1$ answer is $2 \times$ answer to (b)(iii) If ratio $\mathrm{ClO}^{-}: \mathrm{I}_{2}=1: 2$ answer is half of answer to $(\mathrm{b})(\mathrm{iii})$	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (v)}$	Concentration $=\left(6.05 \times 10^{-4} \times 1000 / 25\right)$ $=2.42 \times 10^{-2} / 0.0242 / 0.024 / 2.4 \times 10^{-2}$ $\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	Answers to 1 significant figure	$\mathbf{1}$
TE. Answer to (b)(iv) $\times 1000 \div 25$			

Question Number	Acceptable Answers	Reject	Mark
1(b) (vi)	(Minimum) amount of I^{-}to react with OCl^{-} $=2 \times$ answer to (b)(iv) $=2 \times 6.05 \times 10^{-4}$ $\begin{equation*} =1.21 \times 10^{-3}(\mathrm{~mol}) \tag{1} \end{equation*}$ Allow TE for 2 x answer to (b)(iv) Ignore s.f. Moles of $\mathrm{I}^{-}\left(9.04 \times 10^{-3}\right)$ is more than this number of moles of $\mathrm{ClO}^{-} / \mathrm{I}^{-}$is in excess / KI is in excess / so that all the ClO^{-}can react OR $9.04 \times 10^{-3} \mathrm{~mol} \mathrm{l}^{-}$can react with $4.52 \times 10^{-3} \mathrm{~mol} \mathrm{OCl}^{-}$ Ignore s.f. TE from incorrect equation in (b)(ii) Moles $\mathrm{OCl}^{-}\left(6.05 \times 10^{-4}\right)$ is less than this/ I^{-} is in excess / KI is in excess / so that all the ClO^{-}can react	"KI is in excess" if no calculation has been done.	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (v i i)}$	$0.30 \times 100 / 24.2$ $(=1.2396694)$ $=1.24 / 1.2 \%$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
1(b)(viii)	Judgement (of colour change) at end point / adding starch too early in the titration / jet of burette not filled Errors must cause an increase in titre. Ignore Just "Human error" Just 'overshot endpoint' Transfer errors / spillage Errors due to misreading burette / pipette	Some potassium iodide did not dissolve Leaving funnel in burette Errors which affect both the students titre and an accurate titre using the same solutions e.g. impu solutions	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	(Cl radicals) break down ozone (layer)/ ozone depletion / ozone (layer) thinning Allow damage ozone (layer)/ react with ozone	Global warming	$\mathbf{1}$

Total = 17 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) ~ (i) ~}$	$\mathrm{H} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (Allow atoms in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in any order) $\mathrm{Or} \mathrm{H} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$ Or H Or $\mathrm{H}_{3} \mathrm{O}^{+}$in place of $\mathrm{H}^{+}+\mathrm{HO}_{3}{ }^{2-}$ IGNORE STATE SYMBOLS EVEN IF INCORRECT		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2 (a) (ii)	$2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ LHS (1) RHS (1) OR $\begin{aligned} & 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}^{2-} \rightarrow \\ & \text { LHS (1) } \\ & 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\ & \text { RHS (1) } \end{aligned}$ IGNORE STATE SYMBOLS, EVEN IF INCORRECT $\text { IGNORE } \rightleftharpoons \text { arrows }$	$\mathrm{H}_{2} \mathrm{CO}_{3}$ as a product $\mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{HCO}_{3}^{-}$ Any other ions including spectator ions (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$) in the equation scores zero	2

| Question | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| Number | | | | (b) (i)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) ~ (i i) ~}$	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b)}$ (iii)	$\left(224 \div 24000=0.009333 / 9.333 \times 10^{-3}(\mathrm{~mol})\right.$ Ignore SF except 1 SF lgnore any incorrect units	$" 0.009^{\prime \prime}$ as answer	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b)}$ (iv)	$\mathrm{CaCO}_{3}(\mathbf{s})+2 \mathrm{HCl}(\mathbf{a q}) \rightarrow \mathrm{CaCl}_{2}(\mathbf{a q})+\mathrm{H}_{2} \mathrm{O}(\mathbf{I})+\mathrm{CO}_{2}(\mathbf{g} / \mathbf{a q})$ ALL FOUR state symbols must be correct for this mark		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b)}$ (v)	(Mass of 1 mol $\left.\mathrm{CaCO}_{3}=40+12+3 \times 16\right)=\mathbf{1 0 0} \mathrm{g}$		
ALLOW just " 100 "			
ALLOW any incorrect units			
ALLOW " 100.1 g " OR just " 100.1 " (Reason: this			
uses the Periodic Table value of $\mathrm{A}_{\mathrm{r}}=40.1$ for Ca)			

\hline\end{array}\right.\)

Question Number	Acceptable Answers	Reject	Mark
2 (b) (vi)	(Mass of $\left.\mathrm{CaCO}_{3}=100 \times 0.009333\right)=0.9333(\mathrm{~g})(1)$ IGNORE sig figs including 1 sf here NOTE: Moles of CaCO_{3} consequential on answers to (b)(iii) and (b)(v) [NOTE: if $A_{r}=40.1$ used for Ca , then the answer $=0.9339(\mathrm{~g})$] Percentage of CaCO_{3} in the coral $\begin{equation*} =100 \times 0.9333 / 1.13=82.6 \% \tag{1} \end{equation*}$ NOTE: If mass CaCO_{3} used is 0.93 , final answer is 82.3\% [NOTE: if $A_{r}=40.1$ used for Ca , then the answers $=0.9339(\mathrm{~g})$ and $\mathbf{8 2 . 7} \%$	Final \% answer is not given to 3 sf	2

Question	Acceptable Answers	Reject	Mark
2 (b) (vii)	(Different samples of) coral have different amounts of CaCO_{3} / different proportions of CaCO_{3} / different "levels" of CaCO_{3} ALLOW "calcium carbonate" for CaCO_{3} OR Only one sample of coral (was) used	Answers that do not include any mention of CaCO_{3} References to solubility of CO_{2} in water References to repeating the experiment at a different temperature	1

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i)	$\left(\begin{array}{lll} \\ & \mathrm{COOH}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \quad \text { (1) } & \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \text { (1) }\end{array}\right.$	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
2 (a) (ii)	$5(\mathrm{COOH})_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$	Equation with electrons left in	1
	ALLOW multiples ALLOW 5(COOH $)_{2}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+$ $2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{H}^{+}$ Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (iii)	Moles of $\mathrm{MnO}_{4}^{-}=11.30 / 1000 \times 0.010=1.13 \times 10^{-4}$ (mol) Moles of $(\mathrm{COOH})_{2}$ in $10 \mathrm{~cm}^{3}=1.13 \times 10^{-4} \times 5 / 2=$ $2.825 \times 10^{-4}(\mathrm{~mol})$ Moles of $(\mathrm{COOH})_{2}$ in whole sample $=2.825 \times 10^{-4} \mathrm{x}$ $50=0.01412(5)(\mathrm{mol})$ Mass of acid $=0.01412(5) \times 90=1.27 \mathrm{~g}$ $\begin{equation*} \% \text { in leaves }=1.27 / 250 \times 100=0.51(\%) \tag{1} \end{equation*}$ If ratio $5: 2$ is not used, maximum e.g. if ratio $2: 5$ is used then percentage in leaves = 0.08\%	TE for 5th mark if \% is greater than 100\% Rounding errors once in first 4 marks Final answers not quoted to 2 dp	5

Question Number	Acceptable Answers	Reject	Mark	
2 (a) (iv)	$\pm 0.05 \mathrm{~cm}^{3}$	(1)		$\mathbf{2}$
	$[(0.05 \times 2) / 11.3] \times 100=0.88 \%$	(1)		
	ALLOW $\pm 0.025 \mathrm{~cm}^{3}$	(1)		
	$[(0.025 \times 2) / 11.3] \times 100=0.44 \%$	(1)		
	ALLOW TE for second mark			

Question Number	Acceptable Answers	Reject	Mark
2 (a) (v)	Any two from:		2
	Only one titration carried out (1)	Errors in technique	
	Leaves may contain other substances that MnO_{4}^{-} could oxidize/ react with		
	Not all ethanedioic acid extracted from leaves (1)		
	ALLOW temperature too low / below $60^{\circ} \mathrm{C}$		
	Different amounts of acid from different leaves		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vi)	(Wearing gloves suggested as) ethanedioic acid is toxic / harmful OR rhubarb leaves are toxic /harmful (1) (Unnecessary because) it is (very) dilute / present in small amounts	References to weak acid	$\mathbf{2}$
	ALLOW because is not absorbed through the skin Second mark is independent of the first		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vii)	(Cloudiness due to) MnO_{2} (solid /precipitate) (1) Ignore colour of precipitate		$\mathbf{2}$
EITHER Suitable use of $E^{\ominus}(+0.34 \mathrm{~V})$ OR^{-} MnO_{4}^{-}ions are a strong enough oxidizing agent to oxidize Cl^{-}ions			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) ~ (i) ~}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}\left(4 s^{0}\right)$	$4 s^{2} 3 d^{3}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Octahedral		$\mathbf{1}$

