Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	two marksCl in Cl2 is 0Goes to +1 in HClOGoes to -1 in HCl(2)All three correct for two marksAny two correct for one markIgnore correct oxidation numbers for otherelementsIf three correct numbers given withoutsaying what species they are in max 1 forthese two marks	Only 'Cl ⁺ ' for oxidation number + Only 'Cl ⁻ ' for oxidation number - (treat each separately) For each incorrect oxidation number change for O and H,	3
	Third mark CI/Cl ₂ /the same element is both oxidized and reduced Allow same molecule/species/ type of atom is both oxidized and reduced if answer elsewhere has been in terms of chlorine OR CI/Cl ₂ /the same element both increases and decreases in oxidation number	lose one mark.	
	OR Chlorine both loses and gains electrons (1)	0 to +1 described as reduction and/or 0 to -1 described as oxidation (for third mark)	

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	Equilibrium moves to the left / moves in reverse direction / moves to increase concentration of reactants (1)	Just "reverse reaction is favoured"	2
	To use up (some of) added HCI/ to react with added HCI/ to stop formation of HCI/ restores equilibrium by producing more chlorine and water (1)	Just "to counteract the change in the system" To minimise effect of HCI	
	Second mark depends on first Allow 'moves to decrease concentration of		
	products/HCl' for both marks		

Question Number	Acceptable Answers		Reject	Mark
1 (b)(i)	$CIO^- + 2H^+ + 2e^{(-)} \rightarrow CI^- + H_2O$ ALLOW		Equations without electrons	2
	$CIO^{-} + 2H^{+} \rightarrow CI^{-} + H_2O - 2e^{(-)}$ $2I^{-} \rightarrow I_2 + 2e^{(-)}$	(1)		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)		
	Allow multiples Ignore state symbols even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	CIO ⁻ + 2H ⁺ + 2I ⁻ → CI ⁻ + H ₂ O + I ₂ Mark independently. No TE on 21(b)(i)	Equations including electrons	1

Question Number	Acceptable Answers		Reject	Mark
1(b)(iii)	Moles thiosulfate = $(24.20 \times 0.0500 / 1000) =$ 1.21 x 10 ⁻³ /1.2 x 10 ⁻³ /0.00121/ 0.0012 (mol) Moles iodine = half moles of thiosulfate = 6.05 x 10 ⁻⁴ / 6.1 x 10 ⁻⁴ / 0.000605 / 0.00061 (mol) Correct answer without working	2 (1) (1) (2)	1.20 x 10 ⁻³ (mol) 1x 10 ⁻³ / 0.001 6.0 x 10 ⁻⁴ (mol) 6 x 10 ⁻⁴ (mol)	2

Question Number	Acceptable Answers	Reject	Mark
1(b)(iv)	Moles $CIO^- = 6.05 \times 10^{-4}$ (mol) TE on (b)(ii) and (b)(iii):		1
	If ratio CIO^- : $I_2 = 2:1$ answer is 2 x answer to (b) (iii)		
	If ratio $CIO^-:I_2 = 1:2$ answer is half of answer to (b)(iii)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(v)	Concentration = $(6.05 \times 10^{-4} \times 1000/25)$ = 2.42 x 10 ⁻² / 0.0242/ 0.024/ 2.4 x 10 ⁻² (mol dm ⁻³)	Answers to 1 significant figure	1
	TE. Answer to (b)(iv) x 1000÷ 25		

Question Number	Acceptable Answers	Reject	Mark
1(b)(vi)	(Minimum) amount of I ⁻ to react with OCI ⁻ =2 x answer to (b)(iv) = 2 x 6.05 x 10^{-4} = 1.21 x 10^{-3} (mol) (1)		2
	Allow TE for 2 x answer to (b)(iv) Ignore s.f.	"KI is in excess" if no calculation has been done.	
	Moles of I^- (9.04 x 10 ⁻³) is more than this number of moles of ClO ⁻ / I^- is in excess / KI is in excess / so that all the ClO ⁻ can react (1)		
	OR $9.04 \times 10^{-3} \text{ mol } I^- \text{ can react with}$ $4.52 \times 10^{-3} \text{ mol } OCI^-$ Ignore s.f.		
	TE from incorrect equation in (b)(ii)		
	Moles OCI^{-} (6.05 x 10^{-4}) is less than this/ I ⁻ is in excess / KI is in excess / so that all the CIO ⁻ can react (1)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(vii)	0.30 x 100 / 24.2 (=1.2396694) = 1.24/ 1.2 %		1

Question Number	Acceptable Answers	Reject	Mark
1 (b)(viii)	Judgement (of colour change) at end point / adding starch too early in the titration / jet of burette not filled	Some potassium iodide did not dissolve	1
	Errors must cause an increase in titre.	Leaving funnel in burette	
	Ignore		
	Just "Human error"	Errors which affect both the students titre and an	
	Just 'overshot endpoint'	accurate titre using the same solutions	
	Transfer errors / spillage	e.g. impu solutions	
	Errors due to misreading burette / pipette	SOLUTIONS	

Question Number	Acceptable Answers	Reject	Mark
1 (c)	(Cl radicals) break down ozone (layer)/ ozone depletion / ozone (layer) thinning Allow damage ozone (layer)/ react with ozone	Global warming Causes acid rain	1

Total = 17 marks

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i)	$H_2O + CO_2 \rightarrow H_2CO_3$ (Allow atoms in H_2CO_3 in any order) Or $H_2O + CO_2 \rightarrow H^+ + HCO_3^-$ Or $H_2O + CO_2 \rightarrow 2H^+ + CO_3^{2-}$ Or H_3O^+ in place of H ⁺ <i>IGNORE STATE SYMBOLS EVEN IF INCORRECT</i>		1

Question Number	Acceptable Answers	Reject	Mark
			-
2 (a) (ii)	$2H^+ + CO_3^{2-} \rightarrow H_2O + CO_2$	H ₂ CO ₃ as a product	2
	LHS (1) RHS (1)		
	OR	$H^+ + CO_3^{2-} \rightarrow HCO_3^-$	
	$2H_3O^+ + CO_3^{2-} \rightarrow 3H_2O + CO_2$		
	LHS (1) RHS (1)	Any other ions	
		including spectator	
	IGNORE STATE SYMBOLS, EVEN IF INCORRECT	ions (e.g. Ca^{2+} , CI^{-}) in	
	$IGNORE \Rightarrow arrows$	the equation scores	
		zero	

Question Number	Acceptable Answers	Reject	Mark
2 (b) (i)	dilute hydrochloric acid measuring cylinder image: constrained of the constrained of	If collection over water is not somehow evident	2

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (iii)	$(224 \div 24000 =) 0.009333/9.333 \times 10^{-3} \text{ (mol)}$	"0.009" as answer	1
	Ignore SF except 1 SF Ignore any incorrect units		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (iv)	$CaCO_{3}(s) + 2HCI(aq) \rightarrow CaCI_{2}(aq) + H_{2}O(I) + CO_{2}(g/aq)$		1
	ALL FOUR state symbols must be correct for this mark		

2 (b) (v) (Mass of 1 mol CaCO ₃ = 40 + 12 + 3 x 16) = 100 g ALLOW just "100" ALLOW any incorrect units	Question Number	Acceptable Answers	Reject	Mark
<i>ALLOW</i> "100.1 g " <i>OR</i> just "100.1" (Reason: this uses the Periodic Table value of $A_r = 40.1$ for Ca)	2 (b) (v)	ALLOW just "100" ALLOW any incorrect units ALLOW "100.1 g " OR just "100.1" (Reason: this		1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (vi)	(Mass of CaCO ₃ = 100 x 0.009333) = 0.9333 (g) (1) <i>IGNORE</i> sig figs including 1 sf here NOTE : Moles of CaCO ₃ consequential on answers to (b)(iii) and (b)(v) [NOTE : if $A_r = 40.1$ used for Ca, then the answer = 0.9339 (g)] Percentage of CaCO ₃ in the coral	Final % answer is not	2
	= $100 \times 0.9333 / 1.13 = 82.6\%$ (1) NOTE: If mass CaCO ₃ used is 0.93, final answer is 82.3% [NOTE : if $A_r = 40.1$ used for Ca, then the answers = 0.9339 (g) and 82.7%]	given to 3 sf	

Question Number	Acceptable Answers	Reject	Mark
2 (b) (vii)	(Different samples of) coral have different amounts of CaCO ₃ /different proportions of CaCO ₃ / different "levels" of CaCO ₃	Answers that do not include any mention of CaCO ₃	1
	ALLOW "calcium carbonate" for $CaCO_3$ OR	References to solubility of CO ₂ in water	
	Only one sample of coral (was) used	References to repeating the experiment at a different temperature	

Question	Acceptable Answers	Reject	Mark
Number		-	
2 (a) (i)	$(COOH)_2 \rightarrow 2CO_2 + 2H^+ + 2e^-$ (1)		2
	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (1)		
Question	Acceptable Answers	Reject	Mark
Number			

Question Number	Acceptable Answers	Reject	Mark
2 (a) (ii)	$5(\text{COOH})_2 + 2\text{MnO}_4^- + 6\text{H}^+ \rightarrow 10\text{CO}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}$ ALLOW multiples	Equation with electrons left in	1
	ALLOW $5(COOH)_2 + 2MnO_4^- + 16H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O + 10H^+$		
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (iii)	Moles of $MnO_4^- = 11.30/1000 \times 0.010 = 1.13 \times 10^{-4}$ (mol) (1) Moles of $(COOH)_2$ in 10 cm ³ = 1.13 x 10 ⁻⁴ x 5/2 = 2.825 x 10 ⁻⁴ (mol) (1)	TE for 5th mark if % is greater than 100%	5
	Moles of $(COOH)_2$ in whole sample = 2.825 x 10^{-4} x 50 = 0.01412(5) (mol) (1) Mass of acid = 0.01412(5)x 90 = 1.27 g (1)	Rounding errors once in first 4 marks	
	% in leaves = 1.27/250 x 100 = 0.51 (%) (1) If ratio 5 : 2 is not used, maximum (4) e.g. if ratio 2:5 is used then percentage in leaves = 0.08%	Final answers not quoted to 2 dp	

Question Number	Acceptable Answers		Reject	Mark
2 (a) (iv)	± 0.05 cm ³	(1)		2
	[(0.05 x 2) / 11.3] x 100 = 0.88%	(1)		
	ALLOW ±0.025 cm ³	(1)		
	[(0.025 x 2) / 11.3] x 100 = 0.44%	(1)		
	ALLOW TE for second mark			

Question Number	Acceptable Answers	Reject	Mark
2 (a) (v)	Any two from:		2
	Only one titration carried out (1)	Errors in technique e.g. transfer errors	
	Leaves may contain other substances that MnO ₄ ⁻ could oxidize/ react with (1)		
	Not all ethanedioic acid extracted from leaves (1)		
	ALLOW temperature too low / below 60°C (1)		
	Different amounts of acid from different leaves (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vi)	(Wearing gloves suggested as) ethanedioic acid is toxic / harmful OR	References to weak acid	2
	rhubarb leaves are toxic /harmful (1)	Rhubarb is toxic	
	(Unnecessary because) it is (very) dilute / present in small amounts (1)		
	ALLOW because is not absorbed through the skin		
	Second mark is independent of the first		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vii)	(Cloudiness due to) MnO ₂ (solid /precipitate) (1) Ignore colour of precipitate		2
	EITHER Suitable use of <i>E</i> ⁰ (+0.34V)		
	OR MnO4 ⁻ ions are a strong enough oxidizing agent to oxidize Cl ⁻ ions (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (i)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (4s ⁰)	4s ² 3d ³	1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Octahedral		1