Question	Acceptable Answers		Reject	Mark
1(a)	$\mathrm{V}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{V}(\mathrm{s})$	-1.18 (V)		(1)
	$\mathrm{V}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{V}^{2+}(\mathrm{aq})$	$\begin{gathered} -0.26 \\ (\mathrm{~V}) \end{gathered}$		

Question Number	Acceptable Answers	Reject	Mark
1(b) (i)	A (salt bridge containing saturated solution of) potassium nitrate / KNO_{3} ALLOW potassium chloride / KCl / sodium chloride / $\mathrm{NaCl} /$ sodium nitrate / NaNO_{3} B (electrode) platinum / Pt C (solution containing) vanadium(II) and vanadium(III) ions / V^{2+} and V^{3+} ions ALLOW compounds of V^{2+} and V^{3+} IGNORE any concentrations	KI / Nal vanadium	(3)

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ (temperature) 1 atm / $100 \mathrm{kPa} / 101 \mathrm{kPa} / 1 \mathrm{bar}$ (pressure) ALLOW atmospheric pressure IGNORE hydrogen / gas $1 \mathrm{~mol} \mathrm{dm}^{-3}$ (all concentrations) ALLOW this if written in (b)(i) ALLOW '1 molar' / 1M / equal concentrations of V^{2+} and V^{3+} / vanadium(II) and vanadium(III) ions All 3 correct Any $\mathbf{2}$ correct	$298^{\circ} \mathrm{K} / 273 \mathrm{~K}$ / $0^{\circ} \mathrm{C} /$ room temperature wrong pressure units eg 100 Pa wrong concentration units eg 1 mol	(2)

Question Number	Acceptable Answers	Reject	Mark
1(c)	First mark - stand alone vanadium(IV) / V(IV) / (+)4 (oxidation state) ALLOW V ${ }^{4+}$ IGNORE VO ${ }^{2+}$ Second mark $\mathrm{E}_{\text {cell }}^{\ominus}(=1.00-0.54)$ $\begin{equation*} =(+) 0.46(\mathrm{~V}) \tag{1} \end{equation*}$ Third mark $\begin{equation*} 2 \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \tag{1} \end{equation*}$ ALLOW multiples $/ \rightleftharpoons$ IGNORE any working before this equation Fourth mark For the reduction of V (IV) to V (III) $E_{\text {cell }}^{\ominus}(=0.34-0.54)=-0.2(0)(V)$ OR E^{9} cell for the reaction between VO^{2+} and I^{-}is negative (so $\mathrm{V}(\mathrm{IV}$) is not reduced to $\mathrm{V}(\mathrm{III})$) OR $\mathrm{I}_{2} / \mathrm{I}^{-}$electrode potential / SEP / E^{\ominus} value is more positive than the $\mathrm{VO}^{2+} / \mathrm{V}^{3+}$ value (so $\mathrm{V}(\mathrm{IV})$ is not reduced to $\mathrm{V}(\mathrm{III})$) OR $\mathrm{VO}^{2+} / \mathrm{V}^{3+}$ electrode potential / SEP / E^{\ominus} value is less positive than the $\mathrm{I}_{2} \mathrm{I}^{-}$value (so $\mathrm{V}(\mathrm{IV})$ is not reduced to $\mathrm{V}(\mathrm{III})$) IGNORE equation for VO^{2+} and I^{-} Fifth mark - stand alone E^{\ominus} cell is positive / greater than 0 so (first) reaction is feasible and E^{\ominus} cell is negative / less than 0 so (second) reaction is not feasible ALLOW spontaneous for feasible IGNORE incorrect values provided the signs are correct	Mention of iodide ions reduced Incorrect value	(5)

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	Beaker with V electrode in solution containing V^{2+} (aq) AND beaker containing $\mathrm{V}^{2+}(\mathrm{aq})$ and $\mathrm{V}^{3+}(\mathrm{aq})$ with Pt electrode N.B. Both solution levels must be shown (1) Labelled salt bridge AND connections to voltmeter ALLOW Suitable name or formula of salt for label ALLOW Salts eg NaCl in salt bridge Ion concentrations $=1 \mathrm{~mol} \mathrm{dm}^{-3}$ ALLOW M for $\mathrm{mol} \mathrm{dm}^{-3}$ Concentrations given in one beaker only (1) Beaker positions may be reversed Ignore references to temperature and pressure	Salt bridge neither dipping into nor touching solution unless penalised in MP1 Salt bridge containing an alkali/acid 1 mole of V^{2+} and 1 mole of V^{3+}	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i i) i)}$	st mark $2 \mathrm{~V}^{3+}+\mathrm{V} \rightarrow 3 \mathrm{~V}^{2+}$ Balanced equation, either direction ALLOW Eqm sign for \rightarrow	e^{-}included	2
IGNORE State symbol even if incorrect (1) Second mark Correct direction ALLOW If balancing is incorrect or e^{-}included in equation			

Question	Acceptable Answers		Reject	Mark
2b(i)	$\begin{aligned} & \left(\left[\mathrm{VO}^{2+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})\right],\right. \\ & \left.\left[\mathrm{V}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right] \mid \mathrm{Pt}\right) \end{aligned}$	+0.34		1
	$\begin{aligned} & \left(\left[\mathrm{VO}_{2}^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})\right],\right. \\ & \left.\left[\mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right] \mid \mathrm{Pt}\right) \end{aligned}$	+1.00		
	Sign and value needed			

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	A: (+)0.32 (V) VO^{2+} (may be shown as a product in an overall equation) EITHER Bubbles / effervescence (of colourless gas) OR Colour changes (from yellow) to blue TE on negative $\mathrm{E}_{\text {cell }}$ for 'stays yellow' ALLOW (from yellow) to green if justified by partial reduction B: $-0.2(0)(\mathrm{V})$ no change / stays blue If $B=+0.2$ or other positive value allow colour change from blue to green or brown. EITHER Consistent use of rule that reaction occurs when $\mathrm{E}_{\text {cell }}$ is positive OR Consistent use of rule that no reaction occurs when $E_{\text {cell }}$ negative ALLOW If implied but not stated specifically	Violet Stays violet	6

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 c (i)}$	$\mathrm{V}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$ OR Ox number of V increases by 3, ox number of Mn decreases by 5	Reverse equation unless used to deduce final correct equation.	1
	ALLOW Balanced full equation $5 \mathrm{~V}^{2+}+3 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+} \rightarrow$ $5 \mathrm{VO}_{2}^{+}+3 \mathrm{Mn}^{2+}++2 \mathrm{H}_{2} \mathrm{O}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i i)}$	$(35.50 \times 0.0200 / 1000)=$ $7.1(0) \times 10^{-4} / 0.00071$		1

Question Number	Acceptable Answers	Reject	Mark
2(c)(iii)i)	final answer 92.2 scores 3 marks 33.2 scores 2 marks (ratio inverted) 55.3 scores 2 marks (ratio 1:1) METHOD 1 Mol V^{2+} reacting $=7.10 \times 10^{-4} \times 5 / 3$ $=1.18333 \times 10^{-3}$ $=\mathrm{mol} \mathrm{VO}_{2}{ }^{+}$ TE on answer to (c)(ii) $\begin{align*} & \text { Mass } \mathrm{NH}_{4} \mathrm{VO}_{3}=\left(1.183 \times 10^{-3} \times 116.9\right) \tag{1}\\ & =0.1382927 \mathrm{~g} \\ & \text { TE from } 4.26 \times 10^{-3}=0.497994 \tag{1}\\ & \% \text { purity }=(1) \\ & (92.19333) \\ & =\mathbf{9 2 . 2 \%} \\ & \text { TE from } 0.497994=33.2 \% \tag{1} \end{align*}$ METHOD 2 If 100% pure, moles of $\mathrm{NH}_{4} \mathrm{VO}_{3}$ $\begin{equation*} =0.150 / 116.9=1.283 \times 10^{-3} \tag{1} \end{equation*}$ Mol V^{2+} reacting $=7.10 \times 10^{-4} \times 5 / 3$ $=1.18333 \times 10^{-3}$ $\begin{equation*} =\mathrm{mol} \mathrm{VO}_{2}^{+} \tag{1} \end{equation*}$ TE on answer to (c)(ii) $\begin{align*} & \text { \% purity }= \\ & =1.18333 \times 10^{-3} \times 100 / 1.283 \times 10^{-3} \\ & =\mathbf{9 2 . 2 \%} \tag{1} \end{align*}$ ALLOW TE at each step provided that each number used is to at least 2 sf	$\begin{aligned} & \times 3 / 5 \\ & =4.26 \times 10^{-4} \end{aligned}$	3

Question Number	Acceptable Answers	Reject	Mark
3(a)		+2.46	2
	Half-equation $\mathrm{E}^{\boldsymbol{\circ} / \mathrm{V}}$		
	+0.4(0)		
	$+1.23$		
	(1) for each correct value Penalise omission of + once only		

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{3 (b) (i)}$				

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	- 1 atm / $100 \mathrm{kPa} / 101 \mathrm{kPa} / 1$ bar - $1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\left[\mathrm{H}^{+}\right] /[\mathrm{HCl}]\right)$ ALLOW '1 molar' / '1M' - $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ ALLOW "0 ${ }^{\text {K }}$ " All THREE conditions correct $=\mathbf{2}$ marks Any TWO conditions correct $=\mathbf{1}$ mark IGNORE References to 'standard conditions' References to Pt/catalyst ALLOW $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ INSTEAD of the $1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\left[\mathrm{H}^{+}\right]\right.$/ [HCl]	Wrong pressure units Incorrect concentration units (eg ' 1 mol' / $1 \mathrm{~mol}^{-1}$ dm^{3} for $\left[\mathrm{H}^{+}\right]$) $273 \mathrm{~K} / 0^{\circ} \mathrm{C} /$ 'room temperature'	2

Question Number	Acceptable Answers	Reject	Mark
3(c)	First mark:	Equations involving H^{+}	2
	Mentions / some evidence for the use		
	of BOTH equations 1 AND 3 from the		
	table in any way, even if reversed or		
	left unbalanced eg		
	$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$		
	(aq)		
	AND $4 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$		
	$4 \mathrm{e}^{-}$(aq) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ (1)		
	ALLOW		
	\rightleftharpoons for \rightarrow	If $\mathrm{e}^{-} / \mathrm{OH}^{-} / \mathrm{H}^{+} /$two surplus $\mathrm{H}_{2} \mathrm{O}$ molecules remain in this final equation (0) for 2nd mark	
	Second mark:		
	(Adds the above half-equations cancelling $4 \mathrm{e}^{-}$to get)		
	$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		
	OR		
	$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		
	ALLOW		
	$\rightleftharpoons \text { for } \rightarrow$		
	but must have H_{2} and O_{2} on left		
	Mark the second scoring point		
	independently		
	Award this mark if the correct		
	equation is seen, no matter how it is derived		
	ALLOW MULTIPLES OF EQUATIONS IN		
	ALL CASES		
	IGNORE any state symbols, even if		
	incorrect		
	ALLOW equilibrium sign \rightleftharpoons used in		
	ANY of the above equations instead of the full arrows		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (d)}$	$\mathrm{E}_{\text {cell }}^{\ominus}=+0.40-\quad(-0.83)(\mathrm{V})$ $=(+) 1.23 \quad(\mathrm{~V})$	$\mathbf{- 1 . 2 3 (\mathrm { V })}$	
+ sign NOT required in final answer			
Correct answer with or without			
working scores (1)			
No ECF from any incorrect E values used	$\mathbf{1}$		

Question Number	Acceptable Answers	Reject	Mark
3(e)	Reaction / equation is the same OR Reaction / equation for both is $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ ALLOW $\rightleftharpoons \text { for } \rightarrow$ I GNORE state symbols even if incorrect ALLOW statements such as 'they both produce water from hydrogen and oxygen' / 'reactants and products are the same' ALLOW multiples of the equation	'Electrode potentials don't change' J ust same product / water is produced J ust same reactants are oxidized and reduced Same reaction but in reverse scores (0)	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (f)}$	To increase the surface area /to increase the number of active sites		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(g)	Storage (problems)		1
	OR		
	hydrogen / oxygen / the gases have		
	to be stored under pressure		
	OR		
	Leakage (of hydrogen / of oxygen /of		
	gas)		
	OR		
	Transport(ation) problems		
	OR		
	Hard to carry / lack of portability		
	OR		
	Hydrogen flammable / inflammable		
	OR		
	Hydrogen explosive		
	OR	once' scores (0)	
	(Fuel cell) costly / expensive OR		
	Needs (regular) re-filling		
	OR		
	Needs continual replenishment of H_{2}		
	and O_{2}		
	OR		
	OR		
	Hydrogen is made from fossil fuels /		
	hydrogen is made by electrolysis /		
	hydrogen is made from Natural Gas /		
	hydrogen is made from non-renewable		
	resources		
	ALLOW water is a Greenhouse gas /		
	Fuel cell(s) have short(er) life-span /		
	Fuel cells have to be (regularly) replaced		
	IGNORE references to just 'danger' or just 'safety' or just 'hazardous'		
	Any arguments in terms of voltage		
	output		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a)}$	$-285.8 /-286\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	$\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{(-)} \quad$ (1)		3
	$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{e}^{(-)} \rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq})$ (1)		
	For state symbols mark:		
	Two of the four stated equations (see the		
	two equations above and the two equations		
	unbalanced.		
	All state symbols must be correct in both		
	equations for correct species for the state symbol mark (penalise once only)		
	Both equations for an acid fuel cell score		
	$\max 2$ (1 for correct equations and 1 for		
	states)		
	e.g.		
	$\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{(-)}$		
	OR		
	$\mathrm{H}_{2}(\mathrm{~g})-2 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})$		
	$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
	ALLOW		
	Equation multiples		
	Equations in reverse direction		
	Any order of equations		
	Reversible arrows		

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	Electrolyte / to allow the movement of ions (between electrodes) ALLOW Movement of hydrogen ions/ oxonium ions / hydroxonium ions / hydronium ions $/ \mathrm{H}^{+} /$ $\mathrm{H}_{3} \mathrm{O}^{+} /$hydroxide ions $/ \mathrm{OH}^{-}$(between electrodes)	Catalyst Just 'conducts electricity'	Movement of other ions / charged species
IGNORE			
References to electron transfer	\mathbf{l}		

Question Number	Acceptable Answers	Reject	Mark
4(b)(iii)	Any two of Both involve breaking / weakening bonds OR Both involve active site(s) (on the catalyst surface) OR	$\mathbf{2}$	
Adsorption IGNORE Lowers the activation energy Both heterogeneous References to surface area or "surface for the reaction" References to orientation of reactant molecules "Reaction pathway is similar"	Absorption		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (c) (i)}$	Water is the only product (at the point of use) / no oxide(s) of carbon IGNORE Reference to efficiency and/or high energy density Greener	Less oxide(s) of carbon	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	Any two from:	Any mention of carbon emissions	$\mathbf{2}$
	Fuel cell is more efficient / 70\% efficient ALLOW Any \% between 70\% and 100\% It produces electricity directly OR Less heat loss Releasing energy in a more controlled manner IGNORE (2) References to safety		

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	Either High cost / expensive OR Cost of catalyst OR Short life-span IGNORE References to liquefaction and / or storage of hydrogen / size / weight	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
4(c)(iv)	Any two from Ethanol renewable / sustainable / carbon neutral / availability of raw materials / low(er) carbon footprint / made from natural processes e.g. fermentation or biomass Less explosive / less flammable / safe(r)	2	
	Easier to store / pressure not needed for storage / easier to transfer		
Fuel tank light(er) / small(er) New petrol stations not required ALLOW Reverse arguments for hydrogen IGNORE Reference to cost References to energy density			

