Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	Either		
	Anode $\mathrm{H}_{2}-2 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{H}^{+}$(1) Cathode $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (1) Or Anode $\mathrm{H}_{2}+2 \mathrm{OH}^{-}-2 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (1) Cathode $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{(-)} \rightarrow 4 \mathrm{OH}^{-}$(1) Electrons can be on either side of the equation Allow multiples Allow equilibria signs Ignore state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)	One advantage e.g. quieter, more efficient (energy transfer), no NO formed $^{\text {Ignore references to carbon dioxide and / or }}$ water as only product	Just easier to control	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (c) ~}$	Ethanol can be obtained from biomass / plants / fermentation / ethanol is a bio fuel (1) hydrogen from (electrolysis of) water using a non-fossil source of energy (1) these are renewable / fossil fuels are a finite resource (1) Allow for third mark so less burning/use of fossil fuels hence lower carbon emissions / less impact on greenhouse effect	$\mathbf{3}$	

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	Copper: 0 to $+2 / 2+/ 2^{+} / I I / 2$ (1) Nitrogen: $+5 / 5+/ 5^{+} / \mathrm{V} / 5$ to $+4 / 4+/ 4^{+} / \mathrm{IV} / 4$ (1)		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	$\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{(-)}$ OR $\mathrm{Cu}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cu}^{2+}(1)$ $\mathrm{Cu}\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \mathrm{OK}$ if 6 waters shown on l.h.s. $\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{(-)} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ OR $\begin{equation*} 2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ OR $\begin{equation*} 2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ Ignore the full equation if it is given as well Allow equations written as reverse of above Ignore state symbols even if wrong Allow \rightleftharpoons for \rightarrow		2

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	(electrode potential) values are for standard conditions (1)	nitric acid is concentrated / not $1 \mathrm{~mol} \mathrm{dm}^{-3} /$ not $1 \mathrm{M}(1)$ Allow temperature not stated for second mark	NO_{3} - are not 1 mol dm Any reference to loss of NO_{2}

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	initially a (pale/light) blue precipitate (1)		$\mathbf{2}$
	Allow blue solid (re-dissolves in excess to form) a (deep) blue solution (1) Stand alone mark Accept any shade of blue except greenish-blue	Any colour (other than blue) precipitate in blue solution	

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})(1)$		3
	$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})(1)$		
	$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}(\mathrm{aq})(1)$		
	If two previous equations combined correctly		
	then (1) only : $\mathrm{Zn}^{2+}+4 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{\text {2- }}$		
	Allow		
	$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ZnO}_{2}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
	OR		
	$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{6}{ }^{4-}(\mathrm{aq})$		
	OR		
	equivalent non-ionic equations, including those with $\mathrm{Zn}^{2+}+2 \mathrm{NaOH}$ etc		
	OR		
	Correct balanced equations starting with hexaqua or tetraqua cations		
	ALLOW the hydroxides to be shown as e.g.		
	$\mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ (s) provided that the whole equation balances.		
	Penalise missing /incorrect state symbols on product once only. Ignore other state symbols		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii) QWC	First 2 marks: zinc hydroxide/oxide amphoteric because it reacts with alkali (to give a solution of a zincate) (1) and reacts with acid (to give a salt) (1) zinc hydroxide is / acts as both an acid and an alkali - scores (1) only Third mark: hexaquazinc or hydrated zinc ions exchanged water for ammonia or other named ligand (1) OR $\begin{equation*} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+4 \mathrm{NH}_{3} \rightarrow \text { etc } \tag{1} \end{equation*}$ Allow any number of ammonias from 1 to 6 Allow balanced equations, ionic or full. Ligand exchange reaction must start with a complex ion Note: If zinc mentioned initially but equation refers to a correct compound then credit should be given If equations wrong but words are correct then ignore equations	Reference to zinc ions or zinc metal Do not allow deprotonation	3

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$ Ignore state symbols even if wrong.	Non-ionic equation.	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii) QWC	Mark consequentially but if \% > 100 then (-1) If equation in (i) is incorrect but used correctly in part (ii) then all marks can be scored unless answer > 100\% Correct answer can score 6 marks irrespective of the stoichiometry of the equation in (c)(i) If candidates uses 64 for molar mass of Cu final answer will be 70.6; scores max of 5	70.06 or 70.0	6

Question Number	Acceptable Answers	Reject	Mark
2(c)(iii)	some reagent used to fill the jet (which does not react with the iodine solution) and so the titre is too high (1) and hence the percentage value would be too high (1) Allow only if the titre is said to be high If the titre is thought to be too low then allow percentage value too low for 2nd mark (1)	2	

Question Number	Acceptable Answers	Reject	Mark
3(a)	$3 d^{3} 4 s^{2}$ OR $4 s^{2} 3 d^{3}$		$\mathbf{1}$
$3 d^{5} 4 s^{1}$ OR $4 s^{1} 3 d^{5}$			
both must be correct.			
ALLOW Electron numbers could be on the line or as subscripts IGNORE case of letters			

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	Variable/varying/different/several/ more than one oxidation state /number	Each metal has a different oxidation number	$\mathbf{2}$
	Complex (ion formation) (1) Treat Physical properties (if correct) including catalytic activity as neutral	Ligand exchange	

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	The following metals scores (2) marks with correct E value: Mg 1.96, Ce 1.92, U 1.39, Al 1.25, Mn 0.78, V 0.77, Zn 0.35	All other metals NOTE: Positive sign/unit not needed, but penalise negative value	$\mathbf{2}$
	The following metals score (1) mark with correct E value: Li 2.62, Rb 2.52, K 2.51, Ca 2.46, Na 2.30, Cr 0.33, Fe 0.03		
	NOTE: Positive sign/unit not needed, but penalise negative value		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	Not a redox process Chromate and dichromate both the same/no change in oxidation number (1)		$\mathbf{2}$
	contain Cr(VI) 6/6+	(1)	
Mark independently			
	OR Not redox and both contain $\mathrm{Cr}(\mathrm{VI})$ $6 / 6+$		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	Forms two (dative/covalent) bonds/has two lone pairs (to the Transition Metal/ion)	'...to the molecule'	$\mathbf{1}$
OR donates two pairs of electrons (to the Transition Metal/ion) Check answer to (v) if mark not awarded here			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (v)}$	Any two from Both have two nitrogen atoms with (1) lone pairs or implied or Far enough apart/longer chain in between in en (but not in hydrazine)/too close in hydrazine/hydrazine is too short/not as long or (1) hydrazine max 1 or if implies only en has lone pairs max 1	N=N, or triple	$\mathbf{2}$
Dative bonds/lone pairs too close/repel in hydrazine OR for two marks Forms 5-membered ring (with en with no angle strain/stable) or (2) Bond angles too acute/too much ring strain in hydrazine Mark for iv can be awarded here.			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i)}$	$-0.41(\mathrm{~V})$		$\mathbf{1}$
	Both answers needed, with number and sign, for 1 mark IGNORE additional words	$\mathrm{V})$	

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii) QWC	Combines the equations to obtain $\begin{aligned} & 8 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cr}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ & +14 \mathrm{H}^{+} \end{aligned}$ ALLOW $6 \mathrm{Cr}^{3+}+2 \mathrm{Cr}^{3+}$ instead of $8 \mathrm{Cr}^{3+}$ IGNORE state symbols even if wrong species (1), balance (1) $\begin{equation} E_{\text {reaction }}^{\ominus}=-1.74 \mathrm{~V} \tag{1} \end{equation*}$ So not feasible on condition of negative value OR $6 \mathrm{Cr}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 8 \mathrm{Cr}^{3+}+$ $7 \mathrm{H}_{2} \mathrm{O}$ If fully correct $\begin{equation*} E_{\text {reaction }}^{\circ}=+1.74 \mathrm{~V} \tag{1} \end{equation*}$ Disproportionation not feasible on condition of positive value but reject 'reaction is spontaneous' Other wrong equations IF $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ or Cr^{2+} on left Then +1.74 V If Cr^{3+} alone on the left Then -1.74 V and reaction not feasible	1 max for the equation if electrons are shown balanced or unbalanced	4

