Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	Ignore drawn shapes Shape is trigonal planar/ triangular planar Bond angle $120\left({ }^{\circ}\right)$ Mark independently BUT no TE on incorrect shape	...pyramidal Just planar ${ }^{\circ} \mathrm{C}$	$(20$

Question Number	Acceptable Answers	Reject	Mark
(1(a)(ii)	(Shape) Ignore references to tetrahedral/pyramidal	No M1 if incorrect	(4)
name for			
shape			
eg			
bipyramidal			

Question Number	Correct Answer	Reject	Mark
1(a)(iii)	 OR OR Dot and cross diagram, allow all dots or crosses. IGNORE omission of non-bonding electrons on Fs. But no mark if dot and cross shown for $\mathrm{N}-\mathrm{B}$ bond. M2 Dative covalent (bond) Mark independently	No M1 if dative bond categorically from B to N	(2)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (b) (i)}$	+2 ALLOW $2+$		(1)

Question Number	Correct Answer	Reject	Mark		
$\mathbf{1 (b) (i i)}$	$\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HF}+\mathrm{O}_{2}$				
Ignore state symbols even if incorrect					
Allow multiples				$\quad \mathrm{H}_{2} \mathrm{~F}_{2}$	(1)
:---:					

| Question
 Number | Correct Answer | Reject | Mark |
| :--- | :---: | :--- | :--- | :--- |
| $\mathbf{1 (c)}$ | Accept all dots OR all crosses | | (1) |

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 2 \\ (a)(i) \end{array}$	```H H . x . x x H. xC.xC.xSx.H .x .x xx H H All Bonding electrons (1) Ignore any circles/bonds with electrons Two lone pairs on sulfur Dependent on eight electrons around sulfur (1) Accept all dots/crosses Fully correct methanethiol 1max```	missing Hs/Cs (-1)	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$ (a)(ii)	$104.5\left({ }^{\circ}\right)$ (accept 91 to 105)(1) (Four pairs/two bonding pairs and two non- bonding pairs of electrons in) minimum repulsion/ maximum separation/ as far apart as possible (tetrahedral arrangement) Ignore the number of pairs of electrons (1) And lone/ non bonding pair(s) of electrons repel more (than bond pairs/CH bonds)(1) Mark independently	atoms...	Linear shape (-1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	Two pairs of electrons/two bonds (around (be H atom) OR Can be shown on a diagram either with electrons or bonds (in approximate straight line) around the hydrogen (1)	Linear shape on its own	$\mathbf{2}$
	(Repel to) maximum separation/minimum repulsion/as far apart as possible (1) Dependent on first mark except: Allow: It has a linear shape due to maximum separation/minimum repulsion 1 max		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$ (b)(ii)	Sulfur is less electronegative (than oxygen)/not electronegative enough	Bigger/higher rmm/ atom/molecule alone	$\mathbf{1}$
	OR oxygen is more electronegative (than sulfur) / electronegative enough	OR Hydrogen bonds can only occur between H and either N, O, or F due to the large difference in electronegativity	Hydrogen not bonded to N, O, or F alone

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$ (c)(i)	Temporary asymmetrical distribution/ random arrangement of electrons/ charge (density) Ignore references to atoms/molecules OR instantaneous/temporary dipole (1) (these produce) induced dipoles OR description of induction (1) Mark independently Ignore references to atoms/molecules	Any mention of permanent dipoles $=0 / 2$	$\mathbf{2}$
d+ and d-/unless clearly temporary			

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2}$ (c)(ii)	Ethanethiol/sulfur has more electrons (so forces are stronger)	Larger charge cloud/ larger electron cloud/ more outer electrons on their own	$\mathbf{1}$		
Any reference to					
size/radius/rmm unless					
with correct answer				$~$	OR ethanol/oxygen has fewer/less electrons
:---					
(so forces are weaker)					
Allow oxygen has one fewer shell of electrons					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	Any one from: (d)(i) Sobbles (of gas) /fizzing /effervescence White solid forms	Sodium rushes about (i.e. any confusion with reaction of sodium with water) Flames Steam	$\mathbf{1}$
Multiple answers: number correct minus number wrong to give a maximum of 1 and a minimum of 0	Ignore: sodium floats or sinks and/or heat given out and/or hydrogen produced		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$			
(d)(ii)	Na $+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH} \rightarrow \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SNa}+1 / 2 \mathrm{H}_{2}$ Accept multiples Ignore charges on sodium salt/state symbols even if incorrect	H for hydrogen $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NaS}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{KOH} \rightarrow \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{KBr} / \mathrm{K}^{+}+\mathrm{Br}^{-}$		$\mathbf{1}$
$\mathbf{(e) (i)}$	Accept ionic equation $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Br}^{-}$ Allow molecular formula of alcohol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	Type - substitution (1) (e)(ii) Mechanism - Nucleophilic (1)		$\mathbf{2}$
	Accept words in either order. Both words may be given on either line. N.B. This is the only way to score 2 marks!		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2}$	KSH $/ \mathrm{NaSH}$		$\mathbf{1}$
$\mathbf{(e) (i i i)}$	Allow $\mathrm{KHS} / \mathrm{NaHS}$ or $\mathrm{H}_{2} \mathrm{~S}$		
	Ignore state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (f)}$	Sulfur dioxide/ SO_{2} (1)	SO_{3} CO_{2}	Attacks ozone layer CO_{2} causes acid rain
	Causes acid rain (1) Allow effects of acid rain e.g. acid lakes/lake pollution/ crop or forest damage/limestone building damage/named metal which corrodes. [It is quite possible candidates will give details of oxidation of sulfur dioxide to sulfur trioxide and formation of sulfuric acid. Ignore any of this additional information.]	Allow triggers asthma Ignore any reference to greenhouse gas/ global warming/any reference to sea pollution or sea creatures	Second mark dependent on first mark except allow: If SO 2 not mentioned then, SO $_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ causes acid rain for 1 mark

uestion Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	$109\left(^{\circ}\right) / 109.5\left(^{\circ}\right) / 109^{\circ} 28^{\prime}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$104-106$ ($^{\circ}$) (1) O atom has two lone pairs (and 2 bonding (1) pairs) This mark can be given independently of the first and third mark Lone pairs repel each other more than bonding pairs / angle is reduced to minimise repulsion (by lone pairs) / to maximise (1) separation (of lone pairs)	Lone pairs repel H atoms	$\mathbf{3}$
Ignore 'bonds repel each other' Angle in (ii) must be smaller than in (i) for third mark to be given			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i)}$	Any two from Fizzing / effervescence / bubbles (of gas) (1)	Just "Hydrogen forms"/"gas forms"	$\mathbf{2}$
	Sodium dissolves / disappears / reduces in size White solid /precipitate forms	Fumes	
Ignore identification of products even if incorrect. Ignore sodium melting / moving around / sinking / floating Ignore colourless solution forms Ignore temperature changes / sodium going on fire			

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}+\mathrm{PCl}_{5} \rightarrow \underset{\substack{\text { (1) }}}{\mathrm{HCl}}+\underset{\mathrm{C}_{6}}{\mathrm{C}_{11} \mathrm{Cl}}+\mathrm{POCl}_{3}$ (1) for HCl (1) for rest of the equation correct Cyclohexanol can be skeletal, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH} /$ $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ Accept ' $\mathrm{PCl}_{3} \mathrm{O}$ ' instead of POCl_{3} Accept skeletal formula for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}$ Ignore state symbols	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COH}$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHOH}$ Unless a bond is shown connecting C1 and C6	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i i i)}$	White smoke / solid with ammonia Allow white fumes / dense white fumes / steamy white fumes OR White precipitate with silver nitrate Ignore reference to ammonia solution unless HCl is specifically bubbled into solution Ignore using an indicator to show gas is acidic with one of the above tests Ignore description of appearance of HCl before testing	Just steamy / misty fumes Just testing with an indicator	Bleaches litmus

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i v) ~}$	$\square=0$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (v)}$	(Colour change from) Orange to green / blue / brown	blue- green green-blue yellow to green	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c)}$	$\mathrm{C}_{6} \mathrm{H}_{10}{ }^{(+)}$	$\mathrm{C}_{6} \mathrm{H}_{10}-$ $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}$ $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{C}$ $\mathrm{C}_{6} \mathrm{H}_{11}$ $\left(\mathrm{CH}_{5} \mathrm{OH}\right.$ $\mathrm{C}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$	$\mathbf{1}$

