1 The dihydrogenphosphate-hydrogenphosphate ion system is an important buffer in the human body.

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

(a) In this system, there are two acid-base conjugate pairs. These are acid with its conjugate base base with its conjugate acidA $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}^{2-}$

$$
\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}
$$

B
$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{HPO}_{4}^{2-} / \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$$\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}$

$$
{ }_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}^{2-}
$$D

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}^{2-}$
$\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}$
(b) A formula that can be used for the calculation of the pH of this buffer solution is

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}\right)
$$

Calculate the pH of this buffer using
$\mathrm{p} K_{a}=7.20 \quad\left[\mathrm{HPO}_{4}^{2-}\right]=3.98 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3} \quad\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=3.89 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$

■ A 6.19B 6.21C 7.20D 8.19
(Total for Question = $\mathbf{2}$ marks)

2 Calculate the pH of a solution of HCl , of concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$.A $\quad-0.60$B 0.25C 0.60D 1.39

3 Select the correct pH for each of the following solutions.
(a) $2 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid.A -2B $\quad-0.3$
Q C +0.3D +2
(b) $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2} . \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$.A 13.0B 13.313.7D 14.3
(c) A mixture of $20 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid and $10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.A 0B 0.30C 0.48D 7

$$
\text { (Total for Question = } 3 \text { marks) }
$$

4 Ammonia reacts with water in a reversible reaction. Which are the Brønsted-Lowry bases?A $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}B NH_{3} and OH^{-}C $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{H}_{2} \mathrm{O}$D NH_{4}^{+}and NH_{3}

5 Suggest the most likely pH for each of the following solutions.
(a) $5.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.A +5B +0.7C -0.7D -5
(b) $0 . \mathrm{mol} \mathrm{dm}^{-3}$ strontium hydroxide, $\mathrm{Sr}(\mathrm{OH})_{2}$
$K_{w}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$A 13.3B 13.6C 14.0D 14.3
(c) A mixture of $20 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid and $10 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
\square A 0B 0.30C 0.48D 7

$$
\text { (Total for Question = } 3 \text { marks) }
$$

6 In liquid ammonia the following equilibrium is present.

$$
\mathrm{NH}_{2}^{-}+\mathrm{NH}_{4}^{+} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

Identify the Brønsted-Lowry base(s).A NH_{2}^{-}onlyB NH_{4}^{+}onlyC NH_{2}^{-}and NH_{3}D NH_{4}^{+}and NH_{3}

7 A solution of potassium manganate(VII) was used to determine the concentration of iron(II) ions in solution by titration in the presence of excess dilute sulfuric acid.
(a) With the potassium manganate(VII) in the burette, the end-point of the reaction is when the solution in the conical flask turnsA colourless.B pink.C green.D orange.
(b) If insufficient acid is added, the titre value isA low and a brown precipitate forms.B low and a green precipitate forms.C high and a brown precipitate forms.D high and a green precipitate forms.
(Total for Question = $\mathbf{2}$ marks)

8 Separate $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solutions of ammonia, methylamine and phenylamine were prepared. Which of the following sequences shows the solutions in order of increasing pH ?A phenylamine, methylamine, ammoniaB phenylamine, ammonia, methylamineC methylamine, ammonia, phenylamineD methylamine, phenylamine, ammonia

9 The dissociation constant of water, $K_{w^{\prime}}$ increases with increasing temperature. When the temperature increases, waterA remains neutral.B dissociates less.C becomes acidic.D becomes alkaline.
(Total for Question = 1 mark)

10 The reaction between concentrated sulfuric acid and pure ethanoic acid is

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{HSO}_{4}^{-}
$$

The Brønsted-Lowry acids in this equilibrium are
$\square \mathrm{A} \mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$B $\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}$and HSO_{4}^{-}
$\square \mathrm{C} \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}$
D $\mathrm{CH}_{3} \mathrm{COOH}$ and HSO_{4}^{-}
(Total for Question = 1 mark)

11 An aqueous solution of ethanoic acid is gradually diluted. Which of the following statements is incorrect?

A The pH decreases.B The value of K_{a} is unchanged.C The concentration of ethanoic acid molecules decreases.D The proportion of ethanoic acid molecules which dissociates increases.
(Total for Question = 1 mark)

12 Methyl orange and phenolphthalein are both acid-base indicators. In the titration of a strong acid against a weak alkali

A methyl orange is a suitable indicator but phenolphthalein is not.B phenolphthalein is a suitable indicator but methyl orange is not.C both phenolphthalein and methyl orange are suitable indicators.D neither phenolphthalein nor methyl orange is a suitable indicator.
(Total for Question = 1 mark)

13 Which of the following statements is true about all substances that form acidic solutions in water?A They are corrosive.B They are liquids.C They contain hydrogen atoms.D They form $\mathrm{H}^{+}(\mathrm{aq})$ ions.

14 Select the correct pH for each of the following solutions.
(a) Nitric acid, $\mathrm{HNO}_{3^{\prime}}$, of concentration $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, assuming it is fully dissociated.A -0.3B 0.0C 0.3D 2.0
(b) Sodium hydroxide, NaOH , of concentration $2 \mathrm{~mol} \mathrm{dm}^{-3}$, using $K_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$A -13.7B $\quad 13.7$C 14.0D 14.3
(c) Ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, of concentration $2 \mathrm{~mol} \mathrm{dm}^{-3}$, making the usual assumptions.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$A 2.2
B 2.4
C 4.5
D 4.8
(d) The mixture formed when $25 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution is added to $50 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid, for which $K_{\mathrm{a}}=1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.A 2.2B 2.5C 4.5D 4.8

15 In which of these reactions is the hydrogensulfate ion, HSO_{4}^{-}, behaving as a BrønstedLowry base?A $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$B $\mathrm{HSO}_{4}^{-}+\mathrm{Ba}^{2+} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}^{+}$C $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
D $\mathrm{HSO}_{4}^{-}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{HCO}_{3}{ }^{-}$

(Total for Question 1 mark)

16 A solution of hydrochloric acid has pH 3.0 . When it is made 10 times more dilute, the pH is

A 0.3B 2.0C 4.0D 13.0
(Total for Question 1 mark)

17 In which reaction is water acting as a Brønsted-Lowry acid?A $\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$B $\quad \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
C $\quad \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$D $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$

18 Which of the following solutions has the lowest pH ?A $0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.B $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.
$\square \mathbf{C} \quad 0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid.D $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid.
(Total for Question = 1 mark)

19 An aqueous solution of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$, has a pH of less than 7 becauseA the ammonium ions donate protons to water molecules giving rise to oxonium ions, $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$.B the chloride ions combine with hydrogen ions from water to form hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$.C an aqueous solution of ammonium chloride is unstable and evolves ammonia gas, $\mathrm{NH}_{3}(\mathrm{~g})$, leaving dilute hydrochloric acid.D the ammonium chloride reacts with carbon dioxide from the atmosphere giving ammonium carbonate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})$, and hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$.
(Total for Question = 1 mark)

20 Which one of the following indicators is most suitable for titrating ethanoic acid with $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide?
(Refer to page 19 of your data booklet.)A Thymol blue (acid)B Bromothymol blueC Thymol blue (base)D Alizarin yellow R

21 What is the conjugate base of the acid, $\mathrm{HCO}_{3}{ }^{-}$?A $\mathrm{H}_{2} \mathrm{CO}_{3}$
$\square \mathrm{B} \quad \mathrm{CO}_{3}{ }^{2-}$
$\square \mathrm{C} \mathrm{OH}^{-}$
\square D $\quad \mathrm{CO}_{2}$

$$
\text { (Total for Question = } 1 \text { mark) }
$$

22 The pH of a $1.5 \mathrm{~mol} \mathrm{dm}{ }^{3}$ solution of hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, is1.50B 0.18C 0.18D $\quad 1.50$
(Total for Question 1 mark)

23 Which sequence shows the bases in order of decreasing strength?A $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{NH}_{3}$
B $\mathrm{NH}_{3}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$C $\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$D $\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{CH}_{3} \mathrm{NH}_{2}$

24 Which of the following is not a reaction of a Brønsted-Lowry acid and base?
A $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Cl}$B $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}$C $\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{OH}$D $\mathrm{HCO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{2}+\mathrm{H}_{3} \mathrm{O}^{+}$

(Total for Question 1 mark)

25 Information about four samples of acid is shown below.
Sample 1: $1.0 \mathrm{~mol} \mathrm{dm}{ }^{3} \mathrm{HCl}$
Sample 2: $1.0 \mathrm{~mol} \mathrm{dm}{ }^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$
Sample 3: $0.1 \mathrm{~mol} \mathrm{dm}{ }^{3} \mathrm{HCl}$
Sample 4: $0.1 \mathrm{~mol} \mathrm{dm}{ }^{3} \mathrm{CH}_{3} \mathrm{COOH}$
Which of the following lists shows the samples in order of increasing pH ?A $1,2,3,4$B $4,3,2,1$
$\square \mathbf{C} \quad 2,1,3,4$
\square D 4, 3, 1, 2
(Total for Question 1 mark)

26 In which of the following reactions is nitric acid acting as a base?A $\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$B $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$C $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}$D $\mathrm{HNO}_{3}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

27 The dissociation of ethanoic acid in aqueous solution is represented by

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

Which of the following statements is true for this equilibrium?A $\mathrm{CH}_{3} \mathrm{COOH}$ is an acid and its conjugate base is $\mathrm{CH}_{3} \mathrm{COO}^{-}$.
\square B $\mathrm{H}_{2} \mathrm{O}$ is an acid and its conjugate base is OH^{-}.
■ C At equilibrium, the concentrations of each substance are the same.
■ D A t equilibrium, the reaction from left to right and the reaction from right to left have stopped.
(Total for Question = 1 mark)

28 Why are aqueous solutions of sodium ethanoate slightly alkaline?
\square A The sodium ions react with water to give an alkali.B The ethanoate ions react with water to give hydroxide ions.

- C All sodium salts give alkaline solutions.
\square D The sodium ethanoate is fully ionized in solution.
(Total for Question = 1 mark)

29 A solution of a weak acid cannot be titrated with a weak base using an indicator to find the end-point because

- A the pH change is too gradual close to the equivalence point.
\square B there are too few H^{+}ions to affect the indicator.
- C there are too few OH^{-}ions to affect the indicator.D the pH change occurs outside the range of any indicator.

30 At $100^{\circ} \mathrm{C}$, pure water has a pH of 6 , whereas at $25^{\circ} \mathrm{C}$ it has a pH of 7 . This is because
A the dissociation of water is endothermic, so the concentration of hydrogen ions is lower at $100^{\circ} \mathrm{C}$ than it is at $25^{\circ} \mathrm{C}$.

B the dissociation of water is exothermic, so the concentration of hydrogen ions is lower at $100^{\circ} \mathrm{C}$ than it is at $25^{\circ} \mathrm{C}$.C the dissociation of water is endothermic, so the concentration of hydrogen ions is higher at $100^{\circ} \mathrm{C}$ than it is at $25^{\circ} \mathrm{C}$.D at $100^{\circ} \mathrm{C}$, water has a higher concentration of hydrogen ions than of hydroxide ions.
(Total for Question = 1 mark)

