Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	$\left(\mathrm{K}_{\mathrm{a} 1}=\right)\left[\begin{array}{ll}{\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{HS}^{-}(\mathrm{aq})\right]} \\ {\left[\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})\right]} & \text { (1) } \\ \left(\mathrm{K}_{\mathrm{a} 2}=\right) & {\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{Oq})\right]\left[\mathrm{S}^{2-}(\mathrm{aq})\right]} \\ {\left[\mathrm{HS}^{-}(\mathrm{aq})\right]}\end{array}\right.$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}$ numerator	(2)
	Allow $\mathrm{H}^{+}(\mathrm{aq})$ for $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ Ignore missing / incorrect state symbols (1)		

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	$\left.K_{a 1}=\frac{x^{2}}{0.100}\right)$ M1: $\begin{equation*} \mathrm{x}^{2}=8.91 \times 10^{-9}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right) \tag{1} \end{equation*}$ M2: $\begin{aligned} & \left(\mathrm{x}=9.4393 \times 10^{-5}\right) \\ & {\left[\mathrm{HS}^{-}\right]=9.44 \times 10^{-5} / 0.0000944\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \end{aligned}$ For M2, answer must be to 3 sf Correct answer without working scores (2)		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	$\left(\left[\mathrm{H}^{+}\right]=\left(\sqrt{ } 8.91 \times 10^{-9}\right.\right.$ $\left.=) 9.439 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right)$ $\mathrm{pH}=\left(-\log 9.439 \times 10^{-5}\right)=4.0251 / 4.025 / 4.03 / 4.0$ TE on answer to $(\mathrm{b})(\mathrm{i})$ provided $\mathrm{pH}<7$	$4 / 4.02$	(1)

Question Number	Acceptable Answers	Reject	Mark
* 1(b) (iii)	Any THREE from: Assumption 1 $\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\text {equilibrium }}=\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\text {initial }}$ OR The dissociation of $\mathrm{H}_{2} \mathrm{~S}$ is negligible OR 0.0000944 is very small compared to the initial concentration of $\mathrm{H}_{2} \mathrm{~S} / \mathrm{O} .100$ (hence a valid assumption) Assumption 2 $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HS}^{-}\right] /\left[\mathrm{H}^{+}\right]=\left[\mathrm{HS}^{-}\right]$ OR Ignore any H^{+}from (the dissociation of) water / H^{+} only from $\mathrm{H}_{2} \mathrm{~S}$ Assumption 3 I gnored ionization of HS^{-}/ HS- doesn't (significantly) dissociate further OR $\mathrm{K}_{\mathrm{a} 2}$ very much smaller than $\mathrm{K}_{\mathrm{a} 1}$ Assumption 4 Measurements at $298 \mathrm{~K} /$ standard temperature IGNORE References to the concentration of water References just to "standard conditions"		(3)

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	M1: General shape of an acid-base curve with the pH increasing and either one or two steep / vertical sections shown NOTE Penalise a pH range for a single vertical with a range of eight or more pH units (as this is the typical range for a strong monobasic acid with a strong base titration curve) M2: Vertical / steep section at $25 \mathrm{~cm}^{3}$ M3: Vertical / steep section at $50 \mathrm{~cm}^{3}$ M4: Either equivalence point labelled anywhere on vertical section or x-axis M5: Initial $\mathrm{pH}=1.5$ and a recognisable 'plateau' in the pH range of 12 to 13		(5)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i)}$	The $\mathbf{p H}$ when $12.5 \mathrm{~cm}^{3}$ of NaOH has been added OR the pH at "half-equivalence" (for the first equivalence point) ALLOW "pH at half neutralisation" Allow TE from an incorrect graph		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i)}$	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ $(\mathrm{or} \rightarrow)$ ALLOW $\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ Equation (1) \quad states (1) ALLOW for 1 mark $^{\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}(\text {aq }) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})}$ $\mathrm{States} \mathrm{mark} \mathrm{is} \mathrm{not} \mathrm{stand} \mathrm{alone} \mathrm{but} \mathrm{can} \mathrm{be} \mathrm{awarded}_{\text {if the equation has a minor error e.g. an incorrect }}^{\text {charge }}$	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$ OR $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]$ No TE on incorrect equation in (a)(i) Penalise incorrect charges in (i) and (ii) once only	$\begin{aligned} & \mathrm{K} \mathrm{a}= \\ & {\left[\mathrm{H}^{+}\right]^{2} /} \\ & {\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]} \\ & {\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /} \\ & {[\mathrm{HA}]} \end{aligned}$	1

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i	No TE on (a)(ii) $\begin{align*} & \mathrm{K}_{\mathrm{a}}=10^{-4.28} \text { OR } 5.24807 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ & \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right] \\ & \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} / 0.050 \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(0.05 \times 10^{-4.28}\right)=1.61988 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \tag{1} \end{align*}$ TE on incorrect K_{a} value $\begin{equation*} \mathrm{pH}=-\log 1.61988 \times 10^{-3}=2.7905=2.8 \tag{1} \end{equation*}$ For final mark TE on algebraic / arithmetical errors providing $\mathrm{pH} \geq 1.3$ Correct answer with no working scores 3 Ignore SF except 1 SF		3

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	IGNORE explanations First mark: $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$/hydrogenethanedioate ion ionization negligible ALLOW Acid for $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ Slight / partial / incomplete / does not dissociate for negligible OR $\begin{equation*} \left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]_{\text {equilibrium }}=\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]_{\text {initial }} / 0.050\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Second mark: [H^{+}] due to ionization of water negligible OR auto ionization of water negligible OR [H^{+}] only due to ionization of $\mathrm{HC}_{2} \mathrm{O}_{4}^{-} /$acid OR $\begin{equation*} \left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left[\mathrm{H}^{+}\right] \tag{1} \end{equation*}$ IGNORE references to temperature and to HA and A^{-} Penalize omission of [] in discussion once only	Use of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ for $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ OR sodium hydrogen- ethanedioate for hydrogen- ethanedioate ion throughout this item	2

Question	Acceptable Answers	Reject	Mark
2(b)(ii)	Ethanedioic acid is a (much) stronger acid (than hydrogenethanedioate ion / sodium hydrogenethanedioate) OR Ethanedioic acid has a (much) smaller pK_{a} (than hydrogenethanedioate) OR Ionization / dissociation of ethanedioic acid is (much) greater (than hydrogenethanedioate) OR Reverse arguments IGNORE $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ ionization negligible Approximation of negligible ionization invalid / incorrect OR [$\left.\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\text {equilibrium }}$ not equal to $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\text {initial }}$ No TE on 18(a)(iii) IGNORE Second ionization occurs	Ethanedioic acid is a strong acid / fully dissociated Just ‘approximation invalid'	2
Quest	Acceptable Answers	Reject	Mark
2(c)(i)	Start pH at 2.8 ALLOW 2-4 Vertical section at $25 \mathrm{~cm}^{3}$ within pH range 6-11 and 2.5-4 units long end pH (approaching) value in range 12-13 (asymptotically)	deviation from vertical maximum before final pH	3

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	F mark: Methyl yellow range $=2.9-4$ and the phenolphthalein range $=8.2-10$ ALLOW $\mathrm{pK}_{\text {in }}($ methyl yellow $)=3.5$ and $\mathrm{pK}_{\text {in }}($ phenolphthalein $)=9.3$ Second mark: (The volumes are different) because ethanedioic acid is dibasic / diprotic / has two replaceable/ acidic hydrogen atoms ALLOW dicarboxylic (acid) (therefore there are two stages to the neutralization) OR Methyl yellow range coincides with neutralization of first proton and phenolphthalein range coincides with neutralization of second proton		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	$\mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$	Numerator as $(\mathbf{a) (i)}$ OR $\mathrm{OR}=\left[\mathrm{H}^{+}\right]^{2}$	$\mathbf{1}$
	$\mathrm{Ka}=\left[\mathrm{CO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$	Expressions in terms of	
	OR Use of $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$instead of $\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]$ and $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ instead of $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$	HA alone Round/curved brackets ‘()' Any other carboxylic acid	
	IGNORE state symbols even if wrong		

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$\begin{align*} & 1.7 \times 10^{-5}=\left[\mathrm{H}^{+}\right]^{2} / 0.5 \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.7 \times 10^{-5} \times 0.5 / 2.915(476) \times} \\ & \\ & \mathrm{pH}=\left(-\log \left[\mathrm{H}^{+}\right]\right)=2.53529 \tag{1}\\ & \mathrm{OR}=2.54 \\ & \mathrm{OR}=2.5 \\ & \quad=2.5 \end{align*}$ ALLOW TE for second mark from any hydrogen ion concentration as long as pH less than 7 Correct answer alone scores ALLOW pH $=2.53$ if $\left[\mathrm{H}^{+}\right]$is rounded to 2.92×10^{-3} IGNORE sf except 1	4.77 or 4.8 from using $\mathrm{pH}=-\log \mathrm{Ka}$ loses both marks	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i i i)}$	$20\left(\mathrm{~cm}^{3}\right)$ IGNORE units		$\mathbf{1}$
	OR		
$0.02 \mathrm{dm}^{3}$			

Question Number	Acceptable Answers	Reject	Mark
3(a)(iv)	Moles of excess $\mathrm{NaOH}=10 / 1000 \times 0.50$ $\begin{equation*} =5 \times 10^{-3} \tag{1} \end{equation*}$ So $\left[\mathrm{NaOH} / \mathrm{OH}^{-}\right]=5 \times 10^{-3} \times 1000 / 50=$ $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ EITHER Kw route: $\begin{equation*} \left[\mathrm{H}^{+}\right] \times 0.1=1 \times 10^{-14} \tag{1} \end{equation*}$ So $\mathrm{pH}=-\log 1 \times 10^{-14} / 0.1=13$ OR pOH route: $\begin{equation*} \mathrm{pOH}=1 \tag{1} \end{equation*}$ So $\mathrm{pH}=(14-1)=13$ ALLOW TE throughout Correct final answer scores (4)		4

Question Number	Acceptable Answers	Reject	Mark
3(a)(v)	Starting at pH 2-3 AND finishing at pH between 12 and 13.7 inclusive Vertical section at $20 \mathrm{~cm}^{3}$ S-shaped curve, with gradual rise and vertical section within the pH range 5.5 and 11.5 and of 3 to 5 units in length These are stand alone marks		3

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	EITHER [base] $=\mathrm{Ka}$ [acid] $/\left[\mathrm{H}^{+}\right]$ Or $\begin{align*} & {[\mathrm{H}+]=\left(10^{-\mathrm{pH} 4.70}\right)=1.995 \times 10^{-5}} \tag{1}\\ & {[\text { base }]=1.7 \times 10^{-5} \times 1 /\left(1.995 \times 10^{-5}\right)=0.852} \tag{1} \end{align*}$ $\begin{equation*} \text { moles base }=0.852 \times 0.5=0.426(\mathrm{~mol}) \tag{1} \end{equation*}$ $\begin{equation*} \text { mass base }=0.426 \times 82=34.9 \mathrm{~g} \tag{1} \end{equation*}$ IGNORE sf except 1 Correct answer, with or without working (4) OR $\mathrm{pH}=\mathrm{pKa}-\log [$ acid $] /[$ base $]$ $4.70=4.8-\log [1 /[$ base $]]$ $\log [1 /[$ base $]]=0.1$ [base] $=0.794(328)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ So in $500 \mathrm{~cm}^{3}$ Moles $=0.794 \times 0.5=0.397 \mathrm{~mol}$ $\begin{equation*} \text { Mass }=0.397 \times 82=32.554 / 32.6 \mathrm{~g} \tag{1} \end{equation*}$ (ALLOW using $\mathrm{pKa}=4.77$)		4

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	First mark Buffer has large amount/ excess/ reservoir of $\mathrm{CH}_{3} \mathrm{COOH}$ (and $\mathrm{CH}_{3} \mathrm{COO}^{-}$) Second mark OH^{-}ions added react with $\mathrm{CH}_{3} \mathrm{COOH}$ OR $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O} \text { and } \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+$ OR Equations described in words Third mark Ratio / values of [$\mathrm{CH}_{3} \mathrm{COOH}$] to $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right.$] remains (almost) unchanged IGNORE concentration of hydrogen ions remains constant ALLOW answers in terms of HA and A^{-}		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a)}$	$\mathrm{K}_{\mathrm{a}}=\left(10^{-10.64}\right)=\mathbf{2 . 3} \times \mathbf{1 0}^{\mathbf{- 1 1}} / 2.2909 \times 10^{-11}$ $\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Ignore sf except 1	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$ $\mathbf{(b) (i)}$	$\mathrm{K}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]}$ OR written as HCO_{2}^{-}and $\mathrm{HCO}_{2} \mathrm{H}$ OR with $\mathrm{H}_{3} \mathrm{O}^{+}$instead of H^{+}	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}$ without also giving full expression	$\mathbf{1}$
Allow $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}$ if formula of HA and A^{-}given as HCOOH and HCOO^{-}			

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	$1.6 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.50} \quad$ (1) $\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.6 \times 10^{-4} \times 0.5$ (1) $\left(=\sqrt{ } 8 \times 10^{-5}=8.94 \times 10^{-3}\right)$ $\mathrm{pH}=(2.048455)=\mathbf{2 . 0 5} / \mathbf{2 . 0 ~ (1)}$ Correct answer with no working (3) TE for third mark if $\left[\mathrm{H}^{+}\right]$calculated incorrectly No TE from incorrect K_{a} expression Ignore sf except 1$\mathrm{pH}=2$ $\mathrm{pH}=2.1$		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 4 \\ & (b)(i i i) \end{aligned}$	All H^{+}comes from acid / none from water / $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$ OR Dissociation of acid is negligible / very small OR $[\mathrm{HA}]_{\text {initial }}=[\mathrm{HA}]_{\text {equilibrium }}$	K_{a} is measured at 298K Just "dissociation of acid is partial"	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(i)	HCOOH $\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$ both correct (1)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$ $\mathbf{(c) (i i)}$	$\left(\mathrm{HIO}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\right) \mathrm{H}_{2} \mathrm{IO}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \quad /$		$\mathbf{1}$
$\left(\begin{array}{l}\left.\mathrm{HIO}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\right) \mathrm{HIOH}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \\ \text {Ignore position of positive charges }\end{array}\right.$			

Question Number	Acceptable Answers	Reject	Mark
4 (d)	$(\mathrm{pH}=4.9) \mathrm{so}\left[\mathrm{H}^{+}\right]=\left(1.2589254 \times 10^{-5}\right)$		2
	$\frac{\left(\mathrm{K}_{\mathrm{a}}\right.}{\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$		
	$=\frac{1.6 \times 10^{-4}}{1.259 \times 10^{-5}}$		
	$=12.7 \text { (:1) / 13(:1) (HCOO per }$ HCOOH or base:acid)		
	(12.709252 from unrounded $\left[\mathrm{H}^{+}\right.$] 12.708499 from $\left[\mathrm{H}^{+}\right]$rounded to 1.259×10^{-5} 12.3 from $\left[\mathrm{H}^{+}\right]$rounded to 1.3×10^{-5}) TE from error in $\left[\mathbf{H}^{+}\right.$]		
	Allow 800:63 (1)		
	Correct answer scores 2		
	Accept (0.0786828) $=\mathbf{0} .079 \mathbf{H C O O H}$ per HCOO for acid:base ratio $(0.0786874)=0.079$ from rounded pH		
	OR $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=3.79$		
	$\begin{equation*} 3.79=4.9-\frac{\log [\text { base }]}{[\text { acid }]} \tag{1} \end{equation*}$		
	$\log \frac{[\text { base }]}{[\text { acid }]}=1.11$		
	$\begin{equation*} \frac{[\text { base }]}{[\text { acid }]}=(12.882496)=12.9 \text { (:1) } \tag{1} \end{equation*}$		
	Correct answer scores 2		
	Accept 0.0776/ 0.078 HCOOH per HCOO for acid:base ratio (0.0776247)		
	TE from error in pK_{a} Ignore sf except 1		

