Question Number	Acceptable Answers	Reject	Mark
1 (a)	$(K_{a1} =) [H_3O^+(aq)] [HS^-(aq)]$ [H ₂ S(aq)] (1)	[H ₃ O ⁺] ² numerator	(2)
	$(K_{a2} =) \frac{[H_3O^+(aq)][S^{2-}(aq)]}{[HS^-(aq)]}$	[H ₃ O ⁺] ² numerator	
	Allow H ⁺ (aq) for H ₃ O ⁺ (aq) Ignore missing / incorrect state symbols (1)		

Question Number	Acceptable Answers		Reject	Mark
1(b)(i)	$(H_{2}S + H_{2}O \rightleftharpoons H_{3}O^{+} + HS^{-}$ Initially 0.100 0 0 At eqm 0.100 x x $K_{a1} = \frac{x^{2}}{0.100}$ M1:			(2)
	$x^{2} = 8.91 \times 10^{-9} \text{ (mol}^{2} \text{ dm}^{-6}\text{)}$ M2: (x = 9.4393 x 10^{-5}) [HS ⁻] = 9.44 x 10^{-5} / 0.0000944 (mol dm ⁻³)	(1)		
	For M2, answer must be to 3 sf Correct answer without working scores (2)	(1)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$([H^+] = (\sqrt{8.91 \times 10^{-9}})$ =) 9.439 x 10 ⁻⁵ (mol dm ⁻³)) pH = (-log 9.439 x 10 ⁻⁵) = 4.0251/4.025 /4.03/4.0 TE on answer to (b)(i) provided pH <7	4/4.02	(1)

Question Number	Acceptable Answers	Reject	Mark
*1(b)(iii)	Any THREE from:		(3)
	Assumption 1 $[H_2S]_{equilibrium} = [H_2S]_{initial}$ OR The dissociation of H ₂ S is negligible OR 0.0000944 is very small compared to the initial concentration of H ₂ S/ 0.100 (hence a valid assumption)		
	Assumption 2 $[H_3O^+] = [HS^-] / [H^+] = [HS^-]$ OR Ignore any H ⁺ from (the dissociation of) water / H ⁺ only from H ₂ S		
	Assumption 3 Ignored ionization of HS ⁻ / HS ⁻ doesn't (significantly) dissociate further OR K_{a2} very much smaller than K_{a1}		
	Assumption 4 Measurements at 298 K / standard temperature IGNORE References to the concentration of water References just to "standard conditions"		

Question Number	Acceptable Answers		Reject	Mark
1(c)(i)	M1: General shape of an acid-base curve with the pH increasing and either one or two steep / vertical sections shown NOTE Penalise a pH range for a single vertical with a range of eight or more pH units (as this is the typical range for a strong monobasic acid with a strong base titra curve) M2: Vertical / steep section at 25 cm ³ M3: Vertical / steep section at 50 cm ³ M4: Either equivalence point labelled anywh on vertical section or x-axis M5: Initial pH = 1.5 and a recognisable 'plateau' in the pH range of 12 to 13	(1) (1) (1)		(5)

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	The pH when 12.5 cm ³ of NaOH has been added OR the pH at "half-equivalence" (for the first equivalence point) ALLOW " pH at half neutralisation" Allow TE from an incorrect graph		(1)

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	$\begin{array}{l} HC_2O_4^-(aq) + H_2O(I) \ \Rightarrow C_2O_4^{2-}(aq) \ + H_3O^+(aq) \\ (or \ \rightarrow) \\ \\ ALLOW \ H_2O(aq) \\ \\ Equation \ \textbf{(1)} \qquad states \ \textbf{(1)} \\ \\ \\ ALLOW \ for \ 1 \ mark \\ HC_2O_4^-(aq) \ \Rightarrow C_2O_4^{2-}(aq) \ + \ H^+(aq) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		2

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	$K_{\rm a} = [C_2 O_4^{2^-}] [H_3 O^+] / [HC_2 O_4^-]$	K _a =	1
	OR	[H ⁺] ² / [HC ₂ O ₄ ⁻]	
	$K_a = [C_2O_4^{2^-}] [H^+] / [HC_2O_4^-]$ No TE on incorrect equation in (a)(i) Penalise incorrect charges in (i) and (ii) once only	[H ⁺][A ⁻]/ [HA]	

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i	No TE on (a)(ii) $K_a = 10^{-4.28}$ OR 5.24807 x 10 ⁻⁵ (mol dm ⁻³) (1) $K_a = [H^+]^2 / [HC_2O_4^-]$ $K_a = [H^+]^2 / 0.050$ $[H^+] = \sqrt{(0.05 \text{ x } 10^{-4.28})} = 1.61988 \text{ x} 10^{-3} \text{ (mol dm}^{-3})$ (1)		3
	TE on incorrect K_a value pH = $-\log 1.61988 \times 10^{-3} = 2.7905 = 2.8$ (1) For final mark TE on algebraic / arithmetical errors providing pH ≥ 1.3 Correct answer with no working scores 3		
	Ignore SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	IGNORE explanations First mark: $HC_2O_4^-/hydrogenethanedioate ion ionization negligible ALLOW Acid for HC_2O_4^-Slight / partial / incomplete / does not dissociatefor negligibleOR[HC_2O_4^-]_{equilibrium} = [HC_2O_4^-]_{initial} / 0.050 \text{ (mol dm}^{-3})Second mark:[H^+] due to ionization of water negligibleORauto ionization of water negligibleOR[H^+] only due to ionization of HC_2O_4^-/acidOR[L^+] only due to ionization of HC_2O_4^-/acidOR[C_2O_4^{2-}] = [H^+] (1)IGNORE references to temperature and to HA andA^-Penalize omission of [] in discussion once only$	Use of NaHC ₂ O ₄ for HC ₂ O ₄ ⁻ OR sodium hydrogen- ethanedioate for hydrogen- ethanedioate ion throughout this item	2

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	Ethanedioic acid is a (much) stronger acid (than hydrogenethanedioate ion / sodium hydrogenethanedioate) OR Ethanedioic acid has a (much) smaller pK_a (than hydrogenethanedioate) OR Ionization / dissociation of ethanedioic acid is (much) greater (than hydrogenethanedioate)	Ethanedioic acid is a strong acid / fully dissociated	2
	OR Reverse arguments (1)		
	IGNORE NaHC ₂ O ₄ ionization negligible Approximation of negligible ionization invalid / incorrect OR	Just 'approximation invalid'	
	[H ₂ C ₂ O ₄] _{equilibrium} not equal to [H ₂ C ₂ O ₄] _{initial} (1) No TE on 18(a)(iii) IGNORE Second ionization occurs		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	Start pH at 2.8 ALLOW 2—4 (1)		3
	Vertical section at 25 cm ³ within pH range 6-11 and 2.5-4 units long (1)	deviation from vertical	
	end pH (approaching) value in range 12-13 (asymptotically) (1)	maximum before final pH	

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	Fmark:Methyl yellow range = 2.9—4and the phenolphthalein range = 8.2—10ALLOWpKin (methyl yellow) = 3.5and pKin (phenolphthalein) = 9.3(1)Second mark:(The volumes are different) because ethanedioicacid is dibasic / diprotic / has tworeplaceable/acidic hydrogen atomsALLOW dicarboxylic (acid)(therefore there are two stages to theneutralization)ORMethyl yellow range coincides with neutralization offirst proton and phenolphthalein range coincides		2
	with neutralization of second proton (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	$Ka = [CH_3CO_2^-] [H^+]/[CH_3CO_2H]$ OR $Ka = [CH_3CO_2^-] [H_3O^+]/[CH_3CO_2H]$ OR Use of [CH_3COO^-] instead of [CH_3CO_2^-] and [CH_3COOH] instead of [CH_3CO_2H] IGNORE state symbols even if wrong	Numerator as [H ⁺] ² Expressions in terms of HA alone Round/curved brackets '()' Any other carboxylic acid	1

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$\begin{array}{r} 1.7 \times 10^{-5} = [\mathrm{H}^{+}]^{2} / 0.5 \\ [\mathrm{H}^{+}] = \sqrt{1.7 \times 10^{-5} \times 0.5} / 2.915(476) \times \\ 10^{-3} \\ (1) \\ \mathrm{PH} = (-\log[\mathrm{H}^{+}]) = 2.53529 \\ \mathrm{OR} \\ = 2.54 \\ \mathrm{OR} \\ = 2.5 \end{array}$	1	2
	ALLOW TE for second mark from any hydrogen ion concentration as long as pH less than 7 Correct answer alone scores (2) ALLOW pH = 2.53 if [H ⁺] is rounded to 2.92×10^{-3} IGNORE sf except 1		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	20 (cm ³) IGNORE units OR 0.02 dm ³		1

Question Number	Acceptable Answers		Reject	Mark
3(a)(iv)	Moles of excess NaOH = $10/1000 \times 0$ = 5 x 10^{-3} So [NaOH/OH ⁻] = 5 x $10^{-3} \times 1000/50$	(1)		4
		= (1)		
	EITHER Kw route:			
	$[H^+] \times 0.1 = 1 \times 10^{-14}$	(1)		
	So pH = $-\log 1 \times 10^{-14} / 0.1 = 13$	(1)		
	OR pOH route:			
	•	(1) (1)		
	ALLOW TE throughout			
	Correct final answer scores (4)			

Question Number	Acceptable Answers		Reject	Mark
3(a)(v)	Starting at pH 2-3 AND finishing at pH between 12 and 13.7 inclusive	(1)		3
	Vertical section at 20 cm ³	(1)		
	S-shaped curve, with gradual rise and vertical section within the pH range 5.5 11.5 and of 3 to 5 units in length	and (1)		
	These are stand alone marks			
	12- 10- 8- PH			
		33		
	Yulume of sodium hydroxide / cm ¹	22		

Question Number	Acceptable Answers		Reject	Mark
3 (b)(i)	EITHER			4
	[base] = Ka [acid]/[H ⁺] Or			
	$[H+] = (10^{-pH4.70}) = 1.995 \times 10^{-5}$	(1)		
	$[base] = 1.7 \times 10^{-5} \times 1/(1.995 \times 10^{-5}) = 0.81$	52 (1)		
	moles base = 0.852 x 0.5 = 0.426 (mol)	(1)		
	mass base = 0.426 x 82 = 34.9 g	(1)		
	IGNORE sf except 1			
	Correct answer, with or without working (4)			
	OR			
	pH = p <i>K</i> a – log[acid]/[base]			
	4.70 = 4.8 - log [1/[base]]			
	Log[1/[base]] = 0.1	(1)		
	[base] = 0.794(328) (mol dm ⁻³)	(1)		
	So in 500 cm ³ Moles = $0.794 \times 0.5 = 0.397$ mol	(1)		
	Mass = 0.397 x 82 = 32.554/32.6 g	(1)		
	(ALLOW using $pKa = 4.77$)			

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	First mark Buffer has large amount/ excess/ reservoir of CH_3COOH (and CH_3COO^-)(1)Second mark OH^- ions added react with CH_3COOH OR 		3
	OR Equations described in words (1) Third mark Ratio / values of [CH ₃ COOH] to [CH ₃ COO ⁻] remains (almost) unchanged (1) IGNORE concentration of hydrogen ions remains constant ALLOW answers in terms of HA and A ⁻		

Question Number	Acceptable Answers	Reject	Mark
	$K_a = (10^{-10.64}) = 2.3 \times 10^{-11} / 2.2909 \times 10^{-11}$ (mol dm ⁻³)		1
	Ignore sf except 1		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$K_{a} = \frac{[HCOO^{-}][H^{+}]}{[HCOOH]}$ OR written as HCO_{2}^{-} and $HCO_{2}H$ OR with $H_{3}O^{+}$ instead of H^{+} Allow $K_{a} = \underline{[A^{-}][H^{+}]}$	$K_a = \frac{[H^+]^2}{[HCOOH]}$ without also giving full expression	1
	[HA] if formula of HA and A ⁻ given as HCOOH and HCOO ⁻		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	1.6 x $10^{-4} = \frac{[H^+]^2}{0.50}$ (1) $[H^+] = \sqrt{1.6} \times 10^{-4} \times 0.5$ (1) $(= \sqrt{8} \times 10^{-5} = 8.94 \times 10^{-3})$ pH = (2.048455) = 2.05 / 2.0 (1) Correct answer with no working (3) TE for third mark if [H ⁺] calculated incorrectly No TE from incorrect K_a expression Ignore sf except 1	pH =2 pH =2.1	3

Question Number	Acceptable Answers	Reject	Mark
4 (b)(iii)	All H ⁺ comes from acid / none from water / [H ⁺] = [HCOO ⁻] OR [H ⁺] = [A ⁻] OR Dissociation of acid is negligible / very small OR [HA] _{initial} = [HA] _{equilibrium}	<i>K</i> _a is measured at 298K Just "dissociation of acid is partial"	1

Question Number	Acceptable Answers	Reject	Mark
4 (c)(i)	НСООН		1
	$CH_3COOH_2^+$		
	both correct (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (c)(ii)	$(HIO + CH_3COOH \Rightarrow) H_2IO^+ + CH_3 COO^- /$		1
	(HIO + CH ₃ COOH \Rightarrow) HIOH ⁺ + CH ₃ COO ⁻ Ignore position of positive charges		

Question Number	Acceptable Answers	Reject	Mark
4 (d)	$(pH = 4.9)$ so $[H^+] = (1.2589254 \times 10^{-5})$ = 1.259 x 10 ⁻⁵ (1)		2
	$\begin{pmatrix} \underline{K}_{a} = \underline{[HCOO^{-}]}\\ [H^{+}] & [HCOOH] \end{pmatrix}$		
	$= \frac{1.6 \times 10^{-4}}{1.259 \times 10^{-5}} $		
	= 12.7 (:1) / 13(:1) (HCOO ⁻ per HCOOH or base:acid)		
	(12.709252 from unrounded $[H^+]$ 12.708499 from $[H^+]$ rounded to 1.259 x10 ⁻⁵ 12.3 from $[H^+]$ rounded to 1.3 x10 ⁻⁵) TE from error in [H⁺]		
	Allow 800:63 (1)		
	Correct answer scores 2		
	Accept (0.0786828) = 0.079 HCOOH per HCOO ⁻ for acid:base ratio		
	(0.0786874) = 0.079 from rounded pH		
	OR $pK_a = -\log K_a = 3.79$		
	$3.79 = 4.9 - \log [base]$ (1) [acid]		
	log <u>[base]</u> = 1.11 [acid]		
	[base] = (12.882496) = 12.9 (:1) (1) [acid]		
	Correct answer scores 2		
	Accept 0.0776/ 0.078 HCOOH per HCOO⁻ for acid:base ratio (0.0776247)		
	TE from error in pK _a Ignore sf except 1		