Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	Correct answer with or without working scores $\mathbf{2 ~ m a r k s ~}$ $\left[\mathrm{H}^{+}\right]=\left(1.00 \times 10^{-14} / 0.250\right)=4 \times 10^{-14} \quad$ (1) $\mathrm{pH}=(13.39794=) 13.4$ (1) $\mathbf{O R}$ $\mathrm{pOH}=-\log 0.250=0.602$ (1) $\mathrm{pH}=(13.39794=) 13.4(\mathbf{1)}$ ALLOW TE in second mark if error in $\left[\mathrm{H}^{+}\right]$calculation gives pH more than 7 3 or more sf IGNORE rounding errors e.g. accept 13.39	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(ii)	$\left(\mathrm{K}_{\mathrm{a}}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{COO}=\left[\left[\mathrm{H}^{ \pm}\right]\right.\right.}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ (1) ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}$instead of H^{+} $\left[\mathrm{A}^{=}\right]\left[\mathrm{H}^{ \pm}\right]$if key to symbols given $[\mathrm{HA}]$ IGNORE state symbols $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(iii)	Correct answer with or without working scores $\mathbf{2 ~ m a r k s ~}$ $1.7 \times 10^{-5}=\underline{\left[\mathrm{H}^{ \pm}\right]^{2}}$ 0.125\quad (1)		$\mathbf{2}$
$\left[\begin{array}{ll}{\left[\mathrm{H}^{+}\right]=1.46 \times 10^{-3}} \\ \mathrm{pH}=2.84 / 2.8(1) \\ n o \mathrm{TE} \text { from an incorrect }\left[\mathrm{H}^{+}\right]\end{array}\right.$			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(iv)	$\mathrm{pH}=4.8 / 4.77$ (1) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}$ (when acid is half neutralized) (1)	$\mathrm{H}^{+}=\mathrm{K}_{\mathrm{a}}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(v)	Sigmoid curve starting between pH 2 and 4 (2.8), ending between pH 12 and 14 inclusive (1) with steep rise (may be vertical or gently sloping) of between 3-7 units between pH 6 and 12. Sloping section should not extend over more than $5 \mathrm{~cm}^{3}$. (1) When 12.5 cm^{3}, NaOH added. (1) ALLOW tolerance for grid Reverse curves lose first mark	$\mathbf{3}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (v i)}$	First mark Thymolphthalein more suitable as it changes (from colourless to blue) in steep region of titration (pH 8.3 to 10.6)/ at the equivalence point / at the end point OR thymolphthalein has pH range in steep region of titration (1) Second mark Methyl yellow changes (from red to yellow at pH 2.9 to 4) before equivalence point / before the end point / doesn't change in steep section OR Methyl yellow has pH range before / outside steep region of titration (1) ALLOW 'Thymolphthalein more suitable as it changes at the equivalence point but methyl yellow does not.' This scores 2 marks OR	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i)}$	$\mathrm{K}_{\mathrm{w}} \quad=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]$ OR $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]$ State symbols are not required IGNORE any incorrect state symbols	Inclusion of $\left[\mathrm{H}_{2} \mathrm{O}\right]$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	FI RST, CHECK THE FI NAL ANSWER IF answer $\mathrm{pH}=11.875 / 11.88 /$ 11.9/12 award 2 marks I GNORE sf except 1 sf $\begin{align*} {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} } & =\frac{1.00 \times 10^{-14}}{0.00750} \\ & =1.3333 \times 10^{-12} \\ & =1.33 \times 10^{-12}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ ALLOW first mark for just $\begin{align*} & {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\underline{w}}}{}} \\ & \quad\left[\mathrm{OH}^{-}\right] \\ & \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=11.875 \tag{1}\\ & \\ & =11.88 / 11.9 \end{align*}$ OR $\begin{align*} & \mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=2.12 \tag{1}\\ & \mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH} \\ & \mathrm{pH} \tag{1}\\ & =11.88 / 11.9 \end{align*}$ Second mark only awarded CQ if pH between 8 and 14		2

Question Number	Acceptable Answers	Reject	Mark
2(b))	First mark		2
	(Since $\mathrm{HCOOH}: \mathrm{NaOH}$ ratio is $1: 1$)		
	Second mark		
	$[\mathrm{HCOOH}(\mathrm{aq})]=\frac{1.50 \times 10^{-4}}{0.0250}$		
	OR		
	ALTERNATI VE APPROACH:		
	Use of an expression such as $\begin{equation*} 0.00750 \times 20.0=25 \times y \tag{1} \end{equation*}$		
	$y=\frac{0.00750 \times 20.0}{25}$		

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	(Weak) dissociates / ionizes to a small extent OR dissociate / ionizes partially OR dissociates / ionizes incompletely OR does not fully dissociate / ionize OR forms an equilibrium when reacted with water (Acid) proton donor ALLOW 'proton donator' OR produces / releases H^{+}ions OR produces / releases $\mathrm{H}_{3} \mathrm{O}^{+}$ions Ignore reference to typical acid reactions	'not easily dissociated'	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i i)}$	$\left(\begin{array}{l}\left.\mathrm{K}_{\mathrm{a}}=\right) \frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]} \\ \\ \\ \begin{array}{l}\text { State symbols are NOT required } \\ \text { IGNORE any incorrect state symbols }\end{array}\end{array} \begin{array}{l}\left(\mathrm{K}_{\mathrm{a}}=\right) \begin{array}{l}{\left[\mathrm{H}^{+}\right]^{2}} \\ {[\mathrm{HCOOH}]}\end{array} \\ \hline\end{array}\right.$	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
2(c) (iii)	I GNORE sf except 1 sf THROUGHOUT FI RST, CHECK THE FI NAL ANSWER IF answer $\mathrm{K}_{\mathrm{a}}=1.59 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award the first two $\mathbf{2}$ marks $\begin{align*} {\left[\mathrm{H}^{+}\right](} & \left.=10^{-\mathrm{pH}}=10^{-3.01}\right) \\ & =9.77 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ $\mathrm{K}_{\mathrm{a}} \quad=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}$ $K_{a} \quad=\frac{\left(9.77 \times 10^{-4}\right)^{2}}{6.00 \times 10^{-3}}$ $\begin{equation*} =1.59 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Assumption 1 $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR no H^{+}from the (ionization of) water OR H^{+}only from the acid Assumption 2 Ionization of the (weak) acid is negligible / very small / insignificant OR $[\mathrm{HCOOH}]_{\text {in tial }}-x=[\mathrm{HCOOH}]_{\text {eqm }}$ OR $[\mathrm{HCOOH}]_{\text {eqm }}=[\mathrm{HCOOH}]_{\text {initial }}$ OR $[\mathrm{HCOOH}]_{\text {eqm }}=6.00 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ OR $\left[\mathrm{H}^{+}\right] \ll[\mathrm{HA}]$ Assumptions can be in either order	If incorrect units max 1 J ust 'partial' / 'incomplete' Or ' no dissociation'	4

2(c)(iii) cont'd	OR $\begin{align*} & {\left[\mathrm{H}^{+}\right](=}\left.10^{-\mathrm{pH}}=10^{-3.01}\right) \\ &=9.77 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ &=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{MCOOH}]} \\ & \mathrm{K}_{\mathrm{a}} \\ & \mathrm{~K}_{\mathrm{a}} \quad=\frac{\left(9.77 \times 10^{-4}\right)^{2}}{\left(6.00 \times 10^{-3}-9.77 \times 10^{-4}\right)} \tag{1}\\ &= 1.90 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ Assumption $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR no $\left[\mathrm{H}^{+}\right.$] from the (ionization of) water OR H^{+}only from the acid Ignore references to constant temperature

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	$(\mathrm{Ka}=)\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$ (a)(i) Penalise missing charges ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in place of $\left[\mathrm{H}^{+}\right]$ IGNORE state symbols and units even if incorrect	$\mathrm{Ka}=$ $\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i i)}$	$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(6.3 \times 10^{-5} \times 0.0025\right)$ (1) $\mathrm{pH}=-\log \sqrt{ }\left(6.3 \times 10^{-5} \times 0.0025\right)$ $=3.4(\mathbf{1})$	2 answer if units given	
	Answer without working scores (2) marks 6.8 scores (1) IGNORE sf except 1		

Question Number	Acceptable Answers	Reject	Mark
3(b)	(pH) range (of indicator) 3.8 to 5.4 OR $\begin{equation*} \mathrm{p} K_{\text {in }}=4.7 \tag{1} \end{equation*}$ Bubble bath is (initially yellow since) pH less than 3.8 / is 3.4 Adding of water/dilution (of acid) causes pH to rise/ means $\left[\mathrm{H}^{+}\right.$] decreases Hence pH rises to ≥ 5.4 so blue/changes colour If a(ii) $\mathrm{pH}>3.8$ and <5.4 then loses second marking point but can score other marking points. If a(ii) $\mathrm{pH}>5.4$ then can score first and third marking points only	Water neutralizes acid	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}(\mathrm{a})$	$\mathrm{pH}=(-\log 0.25)=0.602 / 0.60 / 0.6$ lgnore significant figures		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18 (b) (i)	$\begin{aligned} & \left(\mathrm{K}_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]} \\ & \text { ALLOW } \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {for }\left[\mathrm{H}^{+}\right]} \\ & \text {ALLOW } \\ & \mathrm{C}_{2} \mathrm{H}_{5} \text { for } \mathrm{CH}_{3} \mathrm{CH}_{2} \\ & \text { ALLOW } \\ & \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \mathrm{HA} \text { and } \mathrm{A}^{-} \text {identified } \end{aligned}$	Wrong / missing charge on $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}$ $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$ unless full expression also given	1

Question Number	Acceptable Answers	Reject	Mark
18 (b) (ii)	$1.3 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.25} /$ rearrangement of this expression $\left(\left[\mathrm{H}^{+}\right]=1.8 \times 10^{-3}\right)$ $\begin{equation*} \mathrm{pH}=2.74 \tag{1} \end{equation*}$ Correct answer with no working scores (2) No TE for incorrect [H^{+}] Ignore significant figures except 1 Minimum of 1 decimal place needed		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (c) (i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}+\mathrm{H}_{2} \mathrm{O}$	Equations for ethanoic acid	$\mathbf{1}$
	$\mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$		
	Accept $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (ii)	$1.3 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\left[15 \times 10^{-2}\right]\right.}{\left[7.5 \times 10^{-2}\right]} \quad$ (concentration ratio) OR $1.3 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left(1 \times 10^{-3}\right)}{\left(1.5 \times 10^{-3}\right)} \quad$ (ratio by moles) (ratio by moles allowed as volumes acid and salt equal) $\begin{align*} & \left(\left[\mathrm{H}^{+}\right]=1.95 \times 10^{-5}\right) \tag{1}\\ & \mathrm{pH}=4.7 / 4.7099654 \tag{1} \end{align*}$ Second mark dependent on first Correct answer with or without working (2) OR $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \left(\frac{\left(1.5 \times 10^{-3}\right.}{1 \times 10^{-3}}\right)$ OR $\begin{align*} & \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \left(\frac{7.5 \times 10^{-2}}{5 \times 10^{-2}}\right) \tag{1}\\ & \mathrm{pH}=4.7 \end{align*}$ Correct answer with or without working (2) Accept any value which rounds to 4.7		2

Question Number	Acceptable Answers	Reject	Mark
*18 (c) (iii)	Mixture is a buffer (1)		3
	EITHER		
	OH^{-}combines with H^{+}in solution (1)	NaOH combines	
	Propanoic acid dissociates to replace H^{+}(1)		
	Correct equations could gain these marks		
	OR		
	OH^{-}reacts with propanoic acid		
	Correct equation could gain this mark		
	Significant quantities of weak acid and salt are both present /ratio of acid and salt does not change		
	ALLOW a reservoir of weak acid and salt are present: Allow conjugate base for salt		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (iv)	S-shaped curve, vertical at $25 \mathrm{~cm}^{3}$ (with kink at start)		3
	Starting at pH 2-3 (TE from (b)(ii), finishing at pH (1) $12-13$	Vertical section between 3 and 6 units high (1) centred round a pH of between 8 and 9 (1) Vertical section should not extend over more	
than $\pm 2.5 \mathrm{~m}^{3}$ This section should start between 5.5 and 7.5 and finish between 9.5 and 11.5 but do not penalise for very small differences. Reverse curve maximum 2			

Question Number	Acceptable Answers	Reject	Mark
18 (c) (v)	Either Need indicator changing in vertical region of curve / need indicator changing where pH changes sharply / bromocresol green changes before the vertical region Not bromocresol green which changes at 3.8-5.4 OR $\mathrm{pK}_{\text {in }} \pm 1$ must be in vertical section / sharply changing section Not bromocresol green because $\mathrm{pK}_{\text {in }}$ is 4.7 TE from curve with vertical section including pH 3.7-5.7	Just "the equivalence point is outside the bromocresol green range"	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (d) (i)}$	Dilute acid / dilute strong named acid or formula / NaOH(aq) followed by dilute acid /water plus dilute acid / water plus H		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (d) (ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{HCl} /$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{HCl}$ Accept displayed formula	Equations with NaOH or OH^{-}	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (d) (iii)	Colour change orange to green / blue		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18 (e)	Reducing agent /Reduction (of the acid) occurs Li Al H $/$ / lithium tetrahydridoaluminate / lithium aluminium hydride Allow minor error in name if correct formula is given Ignore solvent ALLOW nucleophile AND H for 1 mark	Lithal without correct name or formula	2

Question Number	Acceptable Answers	Reject	Mark
5 (a)(i)	$(\mathrm{pH}=)-\log \left[\mathrm{H}^{+}\right]$	Just "concentration of hydrogen ions" OR $(\mathrm{pH}=)-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ OR \{ curly brackets	$\mathbf{1}$
Accept Definition in words (For example: "It is minus / negative log(arithm) of the hydrogen ion concentration") Base 10 does not have to be there, but reject "In"	$-\log \mathrm{H}^{+}$		

Question Number	Acceptable Answers	Reject	Mark
$5(\mathrm{a})(\mathrm{ii})$	$(\mathrm{pH}=-\log 0.0100)=2(.00)$	If any units given	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
5 (b)(i)	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{9}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}\right]}$ OR $\begin{equation*} \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \tag{1} \end{equation*}$ ALLOW [HA] for $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ and $\left[\mathrm{A}^{-}\right]$for $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$in rearranged expression Accept [H^{+}] for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ } 1.75 \times 10^{-7}$ OR $\begin{equation*} \therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.18(3) \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ $\begin{equation*} \mathrm{pH}=3.38 / 3.4 \tag{1} \end{equation*}$ ignore sf except one sf Third mark TE from $\left[\mathrm{H}^{+}\right]$only if pH less than 7 N.B. CORRECT ANSWER, WITH OR WITHOUT WORKING, SCORES (3) Assumption assumes that degree of ionisation of the acid is very small/negligible OR $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {eqm }}=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {initial }}$ OR $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ OR all of the hydrogen ions come from the acid / ignore hydrogen ions from the water IGNORE any references to temperature	3.37 / 3 /3.39 / a correct pH value with units just "weak acid" / just "partially dissociates" / acid does not dissociate / [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$ constant $\begin{align*} & {\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] /} \\ & {\left[\mathrm{H}^{+}\right]=[\text {salt }]} \tag{1} \end{align*}$	4

Question Number	Acceptable Answers	Reject	Mark
5 (b)(ii)	First mark:		2
	(Dilution/addition of water) shifts the equilibrium		
	$\mathrm{CH}_{3} \mathrm{COOH} \quad \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$		
	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$		
	to the right		
	OR		
	the above stated in words such as: degree of dissociation increases/		
	proportion of dissociation increases/		
	more dissociation (as the ethanoic acid is diluted)		
	Second mark:		
	so the $\left[\mathrm{H}^{+}\right]$is greater than expected/ Reject just a		
	so the decrease in $\left[\mathrm{H}^{+}\right]$is less than expected / reference to a 0.5		
	so that the decrease in $\left[\mathrm{H}^{+}\right]$is less than that for hydrochloric acid	increase in pH for $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	
	Each mark is a stand alone mark.	compared with a 1.0 increase in pH for	
	ALTERNATIVE ROUTE: HCl(aq)		
	First mark:		
	$\left[\mathrm{H}^{+}\right]=\int K_{\mathrm{a}} \times[\mathrm{HA}] \quad$ OR $\left(K_{\mathrm{a}} \times[\mathrm{HA}]\right)^{1 / 2}$		
	OR		
	$\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{a}}-1 / 2 \log [\mathrm{HA}]$		
	Second mark:		
	use of mathematical expression given (e.g. $\left[\mathrm{H}^{+}\right]$affected by factor of $1 / \int 10$ on dilution OR substitution of numerical values into the equation)		
	(1)		
	IGNORE: any comments or calculations relating to $\mathrm{HCl}(\mathrm{aq})$		

Question Number	Acceptable Answers	Reject	Mark
5 (c)(i)	These marks are stand alone. Maintains an almost constant pH / resists change(s) in pH for small addition of H^{+}or OH^{-}ions (N.B. both ions needed) / for small additions of acid or alkali / for small additions of acid or base IGNORE any references to named buffer mixtures	"resists small change(s) in pH " OR "pH does not change"	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (c)(ii)	citric acid		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
5 (c)(iii)	First mark: (buffer contains) reservoir of HA and A^{-} OR (buffer contains) large concentrations of [HA] and [A] OR both equations: $\mathrm{HA} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}^{+} \text {and } \mathrm{NaA} \rightarrow \mathrm{Na}^{+}+\mathrm{A}^{-}$ Second mark: (Addition of alkali/base) $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$ OR description/equations to show that H^{+}reacts with OH^{-}(to form $\mathrm{H}_{2} \mathrm{O}$) and more acid dissociates (to replace H^{+}) Third mark: (Addition of acid) $\mathrm{A}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HA}$ OR A^{-}reacting with H^{+}in any context described in words (e.g. by reference to weak acid equilibrium) Fourth mark: the ratio of $\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]$ hardly changes / the ratio of $[H A] \div\left[A^{-}\right]$hardly changes OR [A-] nor [HA] changes significantly (1)	$\begin{align*} & \frac{\text { JUST }}{\text { and }} \mathrm{NaA} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{A}^{-} \\ & \mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \\ & \text {without correct } \tag{1}\\ & \text { description } \end{align*}$	4

