Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	Correct answer with or without working scores 2 marks		2
	$[H^+] = (1 .00 \times 10^{-14} / 0.250) = 4 \times 10^{-14}$ (1)		
	pH = (13.39794 =) 13.4 (1)		
	OR		
	pOH = -log 0.250 = 0.602 (1)		
	pH = (13.39794 =)13.4 (1)		
	ALLOW TE in second mark if error in [H ⁺] calculation gives pH more than 7 3 or more sf IGNORE rounding errors e.g. accept 13.39		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	$(K_{a} =) \frac{[CH_{3}COO^{=}][H^{\pm}]}{[CH_{3}COOH]}$ (1)	<u>[H</u> [±]] ² [CH₃COOH]	1
	ALLOW H ₃ 0 ⁺ instead of H ⁺ [<u>A=][H[±]]</u> if key to symbols given [HA] IGNORE state symbols		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iii)	Correct answer with or without working scores 2 marks		2
	$1.7 \times 10^{-5} = \frac{[H^{\pm}]^2}{0.125}$ (1)		
	[H ⁺] = 1.46 x 10 ^{−3} pH = 2.84/2.8 (1)		
	no TE from an incorrect [H ⁺]		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iv)	pH = 4.8 / 4.77 (1)		2
	pH = $pK_a / [H^+] = K_a$ (when acid is half neutralized) (1)	$H^{+} = K_{a}$	

1 (a)(v)Sigmoid curve starting between pH 2 and 4 (2.8), ending between pH 12 and 14 inclusive (1)3	Question Number	Acceptable Answers	Reject	Mark
with steep rise (may be vertical or gently sloping) of between 3 - 7 units between pH 6 and 12. Sloping section should not extend over more than 5cm ³ . (1) When 12.5 cm ³ , NaOH added. (1) <i>ALLOW</i> tolerance for grid Reverse curves lose first mark		 (2.8), ending between pH 12 and 14 inclusive (1) with steep rise (may be vertical or gently sloping) of between 3 - 7 units between pH 6 and 12. Sloping section should not extend over more than 5cm³. (1) When 12.5 cm³, NaOH added. (1) <i>ALLOW</i> tolerance for grid 		3

Question Number	Acceptable Answers	Reject	Mark
1 (a)(vi)	First mark Thymolphthalein more suitable as it changes (from colourless to blue) in steep region of titration (pH 8.3 to 10.6)/ at the equivalence point / at the end point OR thymolphthalein has pH range in steep region of titration (1) Second mark Methyl yellow changes (from red to yellow at pH 2.9 to 4) before equivalence point / before the end point / doesn't change in steep section OR Methyl yellow has pH range before / outside steep region of titration (1) <i>ALLOW</i> 'Thymolphthalein more suitable as it changes at the equivalence point but methyl yellow does not.' This scores 2 marks OR First mark pK _{in} ± 1 must lie within vertical region on titration curve (1) Second mark hence thymolphthalein is suitable and methyl yellow is not (1)		2

Question Number	Acceptable Answers	Reject	Mark
1 (b)	Sodium ethanoate/ CH ₃ COONa Potassium ethanoate / CH ₃ COOK <i>ALLOW</i> other cations as alternatives to sodium	Use of sodium hydroxide (because it's in food)	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	$K_w = [H^+] \times [OH^-]$ OR $K_w = [H_3O^+] \times [OH^-]$ State symbols are not required IGNORE any incorrect state symbols	Inclusion of [H ₂ O]	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	FIRST, CHECK THE FINAL ANSWER IF answer pH = 11.875 / 11.88 / 11.9 /12 award 2 marks		2
	IGNORE sf except 1 sf $[H^+] = \frac{K_w}{[OH^-]} = \frac{1.00 \times 10^{-14}}{0.00750}$ $= 1.3333 \times 10^{-12}$ $= 1.33 \times 10^{-12} \text{ (1)}$ (mol dm^{-3}) ALLOW first mark for just $[H^+] = \frac{K_w}{[OH^-]}$		
	$pH = -log_{10} [H^{+}] = 11.875$ = 11.88 / 11.9 (1) OR $pOH = -log_{10} [OH^{-}] = 2.12$ (1) $pH = pK_{w} - pOH$ pH = 11.88 / 11.9 (1) Second mark only awarded CQ if pH between 8 and 14		

Question Number	Acceptable Answers	Reject	Mark
2(b))	First mark Moles NaOH = 0.00750×20.0 1000 = 1.50 x 10 ⁻⁴ (mol) (1) (Since HCOOH : NaOH ratio is 1:1)		2
	Second mark		
	$[HCOOH(aq)] = \frac{1.50 \times 10^{-4}}{0.0250}$ OR $= 1.50 \times 10^{-4} \times \frac{1000}{25.0}$ (1) $(= 6.00 \times 10^{-3} \text{ mol dm}^{-3})$		
	ALTERNATIVE APPROACH:		
	Use of an expression such as $0.00750 \times 20.0 = 25 \times y$ (1) $y = \frac{0.00750 \times 20.0}{25}$		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	(Weak) dissociates / ionizes to a small extent		2
	OR dissociate / ionizes partially OR dissociates / ionizes incompletely OR does not fully dissociate / ionize OR forms an equilibrium when reacted with water (1)	'not easily dissociated'	
	 (Acid) proton donor ALLOW 'proton donator' OR produces / releases H⁺ ions OR produces / releases H₃O⁺ ions 		
	(1) Ignore reference to typical acid reactions		

Question	Acceptable Answers	Reject	Mark
Number			
2 (c)(ii)	$(K_a =) [HCOO^{-}] [H^{+}]$	$(K_a =) [H^+]^2$	1
	[HCOOH]	[HCOOH]	
		Inclusion of [H ₂ O]	
	State symbols are NOT required		
	IGNORE any incorrect state symbols		
Question	Acceptable Answers	Reject	Mark

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	IGNORE sf except 1 sf THROUGHOUT FIRST, CHECK THE FINAL ANSWER IF answer $K_a = 1.59 \times 10^{-4} \pmod{\text{mol dm}^{-3}}$ award the first two 2 marks $[\text{H}^+] (= 10^{-\text{pH}} = 10^{-3.01})$ $= 9.77 \times 10^{-4} \pmod{\text{mol dm}^{-3}}$ (1)		4
	$K_{a} = \frac{[H^{+}]^{2}}{[HCOOH]}$ $K_{a} = \frac{(9.77 \times 10^{-4})^{2}}{6.00 \times 10^{-3}}$ $= 1.59 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$	If incorrect units max 1	
	(1) Assumption 1 $[H^+] = [HCOO^-]$ OR no H ⁺ from the (ionization of) water OR H ⁺ only from the acid (1)		
	Assumption 2 Ionization of the (weak) acid is negligible / very small / insignificant OR $[HCOOH]_{in tial} - x = [HCOOH]_{eqm}$ OR $[HCOOH]_{eqm} = [HCOOH]_{initial}$ OR $[HCOOH]_{eqm} = 6.00 \times 10^{-3} (mol dm^{-3})$ OR	Just 'partial' / 'incomplete' Or ' no dissociation'	
	[H ⁺] << [HA] (1) Assumptions can be in either order		

OR
$[H^+]$ (= 10 ^{-pH} = 10 ^{-3.01})
$= 9.77 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$
(1)
$K_a = [H^+]^2$
[HCOOH]
$K_{a} = \frac{(9.77 \times 10^{-4})^{2}}{(6.00 \times 10^{-3} - 9.77 \times 10^{-4})}$
(1)
$= 1.90 \times 10^{-4} \pmod{\text{dm}^{-3}}$
(1)
Assumption
$[H^+] = [HCOO^-]$
OR
no [H ⁺] from the (ionization of) water
OR
H ⁺ only from the acid
5
(1)
Ignore references to constant temperature

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	$(Ka =) [H^+][C_6H_5COO^-]/[C_6H_5COOH]$ Penalise missing charges ALLOW $[H_3O^+]$ in place of $[H^+]$ IGNORE state symbols and units even if incorrect	Ka = [H ⁺] ² /[C ₆ H₅COOH]	1

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$[H^{+}] = \sqrt{(6.3 \times 10^{-5} \times 0.0025)}$ (1) $pH = -\log \sqrt{(6.3 \times 10^{-5} \times 0.0025)}$ $= 3.4 (1)$ Answer without working scores (2) marks 6.8 scores (1) IGNORE sf except 1	answer if units given	2

Question Number	Acceptable Answers	Reject	Mark
3(b)	(pH) range (of indicator) 3.8 to 5.4 OR $pK_{in} = 4.7$ (1) Bubble bath is (initially yellow since) pH less than 3.8 / is 3.4 (1) Adding of water/dilution (of acid) causes pH to rise/ means [H ⁺] decreases (1) Hence pH rises to \geq 5.4 so blue/changes colour (1) If a(ii) pH>3.8 and <5.4 then loses second marking point but can score other marking points. If a(ii) pH>5.4 then can score first and third marking points only	Water neutralizes acid	4

Question Number	Acceptable Answers	Reject	Mark
18 (a)	pH = (-log 0.25) = 0.602 / 0.60 / 0.6 Ignore significant figures		1

Question Number	Acceptable Answers	Reject	Mark
18 (b) (i)	$(K_{a} =) [H^{+}][CH_{3}CH_{2}COO^{-}]$ $[CH_{3}CH_{2}COOH]$ ALLOW [H_{3}O^{+}] for [H^{+}] ALLOW C ₂ H ₅ for CH ₃ CH ₂ ALLOW [H^{+}][A^{-}] if HA and A ⁻ identified [HA]	Wrong / missing charge on CH ₃ CH ₂ COO ⁻ $K_a = [H^+]^2$ [CH ₃ CH ₂ COOH] unless full expression also given	1

Question Number	Acceptable Answers		Reject	Mark
18 (b) (ii)	1.3 x $10^{-5} = \frac{[H^+]^2}{0.25}$ / rearrangement of this expression (1) ([H ⁺] = 1.8 x 10^{-3})			2
	pH = 2.74 (1)		
	Correct answer with no working scores (2) No TE for incorrect $[H^{\dagger}]$			
	Ignore significant figures except 1 Minimum of 1 decimal place needed			

Question Number	Acceptable Answers	Reject	Mark
18 (c) (i)	$CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COO^{(-)}Na^{(+)} + H_2O$	Equations for ethanoic acid	1
	$OR\;CH_3CH_2COOH\;+\;OH^{\scriptscriptstyle -}\toCH_3CH_2COO^{\scriptscriptstyle -}\;+\;H_2O$		
	Accept $CH_3CH_2CO_2H$, C_2H_5COOH , $C_2H_5CO_2H$		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (ii)	$1.3 \times 10^{-5} = \frac{[H^+][5 \times 10^{-2}]}{[7.5 \times 10^{-2}]}$ (concentration ratio)		2
	OR		
	1.3 x $10^{-5} = [H^+](1 \times 10^{-3})$ (ratio by moles) (1.5 x 10^{-3}) (ratio by moles allowed as volumes acid and salt equal) (1)		
	([H⁺] = 1.95 x 10 ⁻⁵)		
	pH = 4.7 / 4.7099654 (1)		
	Second mark dependent on first Correct answer with or without working (2)		
	OR		
	$pH = pK_a - \log (\frac{1.5 \times 10^{-3}}{1 \times 10^{-3}})$		
	OR		
	pH = pK _a -log $(\frac{7.5 \times 10^{-2}}{5 \times 10^{-2}})$ (1)		
	pH = 4.7 (1)		
	Correct answer with or without working (2)		
	Accept any value which rounds to 4.7		

Question Number	Acceptable Answers		Reject	Mark
*18 (c) (iii)	Mixture is a buffer EITHER	(1)		3
	OH^{-} combines with H^{+} in solution	(1)	NaOH combines	
	Propanoic acid dissociates to replace H ⁺ Correct equations could gain these marks	• •		
	OR			
	OH ⁻ reacts with propanoic acid Correct equation could gain this mark	(1)		
	Significant quantities of weak acid and sal both present /ratio of acid and salt does r change			
	ALLOW a reservoir of weak acid and salt a present: Allow conjugate base for salt	ire		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (iv)	S-shaped curve, vertical at 25 cm ³ (with kink at start) (1) Starting at pH 2-3 (TE from (b)(ii), finishing at pH 12 -13 (1) Vertical section between 3 and 6 units high		3
	centred round a pH of between 8 and 9 (1) Vertical section should not extend over more than ±2.5cm ³ This section should start between 5.5 and 7.5 and finish between 9.5 and 11.5 but do not penalise for very small differences. Reverse curve maximum 2		

Question Number	Acceptable Answers		Reject	Mark
18 (c) (v)	Either Need indicator changing in vertical region of curve / need indicator changing where pH changes sharply / bromocresol green changes before the vertical region Not bromocresol green which changes at 3.8 - 5.4		Just "the equivalence point is outside the bromocresol green range"	2
	OR pK _{in} ±1 must be in vertical section / sharply changing section Not bromocresol green because pK _{in} is 4.7 TE from curve with vertical section including 3.7 - 5.7	(1) (1) pH		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (i)	Dilute acid / dilute strong named acid or formula / NaOH(aq) followed by dilute acid /water plus dilute acid / water plus H ⁺	NaOH alone water any weak acid concentrated sulfuric acid HCN acid hydrolysis alone	1

Question Number	Acceptable Answers	Reject	Mark
18 (d) (ii)	$\begin{array}{l} CH_3CH_2COCl + H_2O \rightarrow CH_3CH_2COOH + HCl \ / \\ C_2H_5COCl + H_2O \rightarrow C_2H_5COOH + HCl \end{array}$	Equations with NaOH or OH ⁻	1
	Accept displayed formula		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (iii)	Colour change orange to green / blue		1

Question Number	Acceptable Answers	Reject	Mark
18 (e)	Reducing agent /Reduction (of the acid) occurs (1)		2
	Li Al H4 / lithium tetrahydridoaluminate / lithium aluminium hydride (1)	Lithal without correct name or formula	
	Allow minor error in name if correct formula is given		
	Ignore solvent		
	ALLOW nucleophile AND H ⁻ for 1 mark		

Question Number	Acceptable Answers	Reject	Mark
5 (a)(i)	(pH =) -log [H ⁺] OR (pH =) -log [H ₃ O ⁺] OR	Just "concentration of hydrogen ions" { } curly brackets -log H ⁺	1
	Accept Definition in words (For example: "It is minus / negative log(arithm) of the hydrogen ion concentration") Base 10 does not have to be there, but reject "In"		

Question Number	Acceptable Answers	Reject	Mark
5 (a)(ii)	(pH = -log 0.0100) = 2(.00)	If any units given	1

Question Number	Acceptable Answers	Reject	Mark
5 (b)(i)	$[H_{3}O^{\dagger}] = \frac{K_{a}[CH_{3}COOH]}{[CH_{3}COO^{-}]}$ OR		4
	$[H_3O^*]^2 = K_a[CH_3COOH] $ (1)		
	ALLOW		
	[HA] for [CH ₃ COOH] and [A ⁻] for [CH ₃ COO ⁻] in rearranged expression		
	Accept [H⁺] for [H₃O⁺]		
	∴[H ₃ O ⁺] = $\sqrt{1.75 \times 10^{-7}}$ OR		
	$\therefore [H_3O^+] = 4.18(3) \times 10^{-4} \text{ (mol dm}^{-3}\text{)} $ (1)		
	pH = 3.38 / 3.4 (1) ignore sf except one sf	3.37 / 3 /3.39 / a correct pH value with	
	Third mark TE from $[H^*]$ only if pH less than 7	units	
	N.B. CORRECT ANSWER, WITH OR WITHOUT WORKING, SCORES (3)		
	Assumption assumes that degree of ionisation of the acid is very small/negligible OR [CH ₃ COOH] _{eqm} =[CH ₃ COOH] _{initial}	just "weak acid" / just "partially dissociates" / acid does not dissociate /	
	OR [H ⁺] = [CH ₃ COO ⁻] OR all of the hydrogen ions come from the acid / ignore hydrogen ions from the water (1)	$[CH_{3}COOH] \text{ constant}$ $[H^{+}] = [OH^{-}] /$	
	IGNORE any references to temperature	[H ⁺] = [salt]	

-			
Question Number	Acceptable Answers	Reject	Mark
5 (b)(ii)	First mark:		2
	(Dilution/addition of water) shifts the equilibrium		
	$CH_3COOH \qquad \qquad \simeq CH_3COO^- + H^+ /$		
	$CH_{3}COOH + H_{2}O \Rightarrow CH_{3}COO^{-} + H_{3}O^{+}$		
	to the right OR		
	the above stated in words such as: degree of dissociation increases/ proportion of dissociation increases/ more dissociation (as the ethanoic acid is diluted) (1)		
	Second mark:		
	so the $[H^{+}]$ is greater than expected/ so the decrease in $[H^{+}]$ is less than expected / so that the decrease in $[H^{+}]$ is less than that for hydrochloric acid (1)	Reject just a reference to a 0.5 increase in pH for CH ₃ COOH(aq)	
	Each mark is a stand alone mark.	compared with a 1.0 increase in pH for	
	ALTERNATIVE ROUTE:	HCl(aq)	
	First mark:		
	$[H^+] = \int K_a \times [HA] \text{ OR } (K_a \times [HA])^{\frac{1}{2}}$		
	OR		
	$pH = \frac{1}{2}pK_a - \frac{1}{2}\log[HA]$ (1)		
	Second mark:		
	use of mathematical expression given (e.g.[H ⁺] affected by factor of 1//10 on dilution OR substitution of numerical values into the equation)		
	(1)		
	<i>IGNORE</i> : any comments or calculations relating to HCl(aq)		

Question Number	Acceptable Answers		Reject	Mark
5 (c)(i)	These marks are stand alone. Maintains an almost constant pH / resists change(s) in pH	(1)	"resists small change(s) in pH" OR "pH does not change"	2
	for small addition of H ⁺ or OH ⁻ ions (N.B. bot ions needed) / for small additions of acid or alkali / for small additions of acid or base <i>IGNORE</i> any references to named buffer mixtures	:h (1)		

Question Number	Acceptable Answers	Reject	Mark
5 (c)(ii)	citric acid		1

Question Number	Acceptable Answers	Reject	Mark
5 (c)(iii)	First mark: (buffer contains) reservoir of HA and A ⁻ OR (buffer contains) large concentrations of [HA] and [A ⁻] OR both equations: HA \Rightarrow A ⁻ + H ⁺ and NaA \rightarrow Na ⁺ + A ⁻ (1) Second mark: (Addition of alkali/base) HA + OH ⁻ \rightarrow A ⁻ + H ₂ O OR description/equations to show that H ⁺ reacts with OH ⁻ (to form H ₂ O) and more acid dissociates (to replace H ⁺) (1) Third mark: (Addition of acid) A ⁻ + H ⁺ \rightarrow HA OR A ⁻ reacting with H ⁺ in any context described in words (e.g. by reference to weak acid equilibrium) (1)	$\frac{JUST}{and} NaA \Rightarrow Na^{+} + A^{-}$ HA \rightarrow H ⁺ + A ⁻ without correct description	4
	Fourth mark: the ratio of [A-]÷[HA] hardly changes / the ratio of [HA]÷ [A-] hardly changes OR [A-] nor [HA] changes significantly (1)	Just [H⁺] remains constant	