

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 1 \text { (a) } \\ & \text { (ii) } \end{aligned}$	1st scoring point: Propanoate ions present (at equivalence point) OR Potassium propanoate present (at equivalence point) 2nd scoring point: Propanoate (ions) react with water / propanoate (ions) are hydrolysed by water / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$ions react with water ALLOW propanoate ions react with H^{+}(from water) / the salt reacts with water (molecules) 3rd scoring point - consequential on $\mathbf{2}^{\text {nd }}$ scoring point being awarded: Forming hydroxide ions/ leaves excess of hydroxide ions / produces OH^{-}/ forming OH^{-}/ forming $\mathrm{KOH} /\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$ NOTE - the equation: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ scores ALL THREE MARKS NOTE Just 'weak acid - strong base titration' scores (1) only		3

NOTE If fail to \div by $\mathbf{0 . 0 6 5} \mathbf{~ d m}^{\mathbf{3}}$, then $\mathrm{pH}=10.8$ scores 4 marks. Other answers to look for if M1 and M2 have been awarded, but division by an incorrect value for the total volume of the mixture, then each of the following would score 4 overall as shown. $\begin{aligned} & \mathbf{I f} \div \mathbf{b y} \mathbf{0 . 0 2 5} \mathbf{~ d m}^{\mathbf{3}} \text {, no M3 } \\ & \mathrm{pH}=12(.43) \text { scores } 4 \text { marks. } \end{aligned}$ If \div by 0.040 dm $^{\mathbf{3}}$, no M3 $\mathrm{pH}=12(.23)$ scores 4 marks. If \div by $0.015 \mathbf{~ d m}^{\mathbf{3}}$, no M3 $\mathrm{pH}=12(.66)$ scores 4 marks.		

Question Number	Correct Answer	Reject	Mark
1 (b)	No, as T increases eqm moves to RHS / K_{w} increases / 'favours RHS' / $\Delta \mathrm{S}_{\text {total }}$ increases So $\left[\mathrm{H}^{+}\right]$ions increases / more H^{+}ions $\left[\mathrm{H}^{+}\right]>1 \times 10^{-7}$ Hence $\mathrm{pH}<7 / \mathrm{pH}$ decreases OR reverse argument for a decrease in temperature NOTE If answer given is 'Yes' (i.e. candidate thinks that the pH of pure water is always 7.0), then max (1) for stating that equilibrium shifts to the right when temperature increases (since reaction is endothermic in the forward direction) NOTE If says K_{w} decreases as T increases, then $\max (1)$ for a completely logical CQ argument mentioning the effect on $\left[\mathrm{H}^{+}\right]$ (decreasing) and pH (increasing)		3

