1 Which of the following gives the electronic configurations for a chromium atom and a chromium(II) ion?

		Cr	2+
×	A	[Ar]3d ⁴ 4s ²	[Ar]3d⁴
×	В	[Ar]3d ⁵ 4s ¹	[Ar]3d⁴
X	c	[Ar]3d ⁴ 4s ²	[Ar]3d²4s²
×	D	[Ar]3d ⁵ 4s ¹	[Ar]3d³4s¹

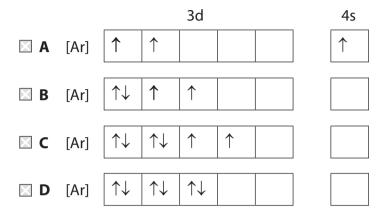
(Total for Question = 1 mark)

- 2 In which of the following ions does the metal have an oxidation number of +3?
- MnO₄²⁻
- B VO²⁺
- \square **D** $[CrCl_2(H_2O)_4]^+$

(Total for Question = 1 mark)

- **3** What is the electronic configuration of the stable scandium ion?
 - \triangle **A** [Ar] 3d⁰ 4s²
 - B [Ar] 3d¹ 4s¹
 - ☑ C [Ar] 3d⁰ 4s¹
 - ☑ D [Ar] 3d⁰ 4s⁰

4 The shapes of the complexes $[CrCl_4]^-$ and $[Pt(NH_3)_2Cl_2]$ are


	[CrCl₄]⁻	$[Pt(NH_3)_2CI_2]$
⋈ A	square planar	square planar
⊠ B	tetrahedral	tetrahedral
⊠ C	square planar	tetrahedral
⋈ D	tetrahedral	square planar

(Total for Question = 1 mark)

- 5 In which of the following ions does the metal have an oxidation number of +2?
 - A MnO₄²⁻
 - B VO²⁺

 - \square **D** $[CrCl_2(H_2O)_4]^+$

6 The electronic configuration of iron is $[Ar]3d^64s^2$. What is the electronic configuration of the iron(II) ion, Fe^{2+} ?

(Total for Question = 1 mark)

- **7** Chromium has the electronic configuration [Ar]3d⁵4s¹. Which of the following compounds is **unlikely** to exist?
 - A K₃CrO₄
 - ☑ B CrO₂Cl₂

 - ☑ D KCrO₄

8 The shapes of the complexes [CrCl₄]⁻ and [CuCl₂]⁻ are

	[CrCl ₄] ⁻	[CuCl ₂] ⁻
⊠ A	tetrahedral	linear
⋈ B	square planar	linear
⊠ C	tetrahedral	V-shaped
⊠ D	square planar	V-shaped

(Total for Question = 1 mark)

9 Consider the following reaction.

$$S_2O_8^{\ 2-}(aq) \ + \ 2I^-(aq) \ o \ 2SO_4^{\ 2-}(aq) \ + \ I_2(aq)$$

Which of the following ions could catalyse this reaction?

- **B** Al³⁺
- C Fe²⁺
- **D** Na⁺

10 EDTA ions form a complex with aqueous nickel(II) ions as shown by the equation

$$[Ni(H_2O)_6]^{2+}(aq) + (EDTA)^{4-}(aq) \implies Ni(EDTA)^{2-}(aq) + 6H_2O(I)$$

Aqueous nickel(II) ions also form a complex ion with ammonia as shown by the equation

$$[Ni(H_2O)_6]^{2+}(aq) + 6NH_3(aq) \rightleftharpoons [Ni(NH_3)_6]^{2+}(aq) + 6H_2O(l)$$

Aqueous nickel(II) ions form a more stable complex with EDTA ions than with ammonia because

- A six ammonia ligands cause steric hindrance around the central nickel(II) ion.
- **B** EDTA ions carry a negative charge whereas ammonia molecules do not.
- there is a large increase in entropy when aqueous nickel(II) ions react with EDTA ions, but not when aqueous nickel(II) ions react with ammonia.
- **D** ammonia molecules tend to evaporate from the solution of the complex whereas EDTA ions do not.

(Total for Question = 1 mark)

11 Which of the following shows the correct oxidation states of **chromium** in the ions given?

	[Cr(OH) ₆] ³⁻	CrO ₄ ²⁻	$[Cr(H_2O)_6]^{2+}$
⊠ A	-3	-2	+2
⊠ B	-3	+10	+2
⊠ C	+3	+8	+6
⊠ D	+3	+6	+2

12									rogen atalyse		•	sts. Which of the following ?
	⊠ A	Ad	lso	rption	of rea	actant	mole	cules	on the	surfa	ace of	the metal.
	⊠ B	Во	nd	break	ing in	the r	eacta	nt mo	lecule	5.		
	⊠ C	De	so	rption	of pro	oduct	mole	cules	from t	he su	rface c	of the metal.
	⊠ D	An	٥١)	verall o	chang	e in tl	ne oxi	datior	numl	oer of	the m	netal.
											(T	Total for Question = 1 mark)
	13	Th	e e	lectro	nic str	uctur	e of th	ne chr	omiun	n(III) i	on, Cr ³	³+, is
							3d				4s	
		×	A	[Ar]	↑						$\uparrow\downarrow$	
		× I	В	[Ar]	↑	↑					\uparrow	
		×	С	[Ar]	\uparrow	↑						
		×	D	[Ar]	$\uparrow\downarrow$	↑						
												(Total for Question = 1 mark)
				m has nds is					e 1s²2s	² 2p ⁶ 3	8s²3p ⁶ 3	3d ² 4s ² . Which of the following
	Σ	A	K	TiF ₆								
		В	K	TiF ₆								
		₫ C	K	Z ₂ Ti ₂ O ₅								
		D	K	TiO ₄								
												(Total for Question = 1 mark)

15 The ligands that form complex ions are either neutral, like NH₃, or negatively charged, like CN⁻. Nickel(II) ions, Ni²⁺, form complexes with both these ligands. The bonding between Ni²⁺ and the ligands in these complexes is

		NH ₃	CN-
X	A	dative covalent	dative covalent
X	В	ionic	dative covalent
X	c	dative covalent	ionic
X	D	ionic	ionic

(Total for Question = 1 mark)

16	When excess aqueous ammonia is added to a solution containing Zn ²⁺ (aq) ions, a
	colourless solution is formed. This solution is colourless because

☑ A zinc does not form complex ions.

 $lacksquare{B}$ the d orbitals of Zn^{2+} in the complex formed are not split into different energy levels.

C the energy difference between the d orbitals of Zn²⁺ in the complex formed does not correspond to the visible region of the spectrum.

 \square **D** the d orbitals of Zn²⁺ in the complex formed are full.

17	Fo	our complex ions have the following formulae:	
	A	Cu(edta) ²⁻	
	В	$Zn(H_2O)_6^{2+}$	
	C	Ni(NH ₃) ₆ ²⁺	
	D	CrCl ₄ ²⁻	
	(a)	Which complex ion is most likely to be tetrahedral in shape?	(1)
	×	A	(1)
	X	В	
	X	C	
	×	D	
	(b)	Which complex ion is most likely not to be coloured?	(1)
	×	A	(-)
	×	В	
	X	C	
	X	D	
		Each of these complex ions may be formed by ligand exchange from an aqua complex. For which complex ion is the entropy change of this reaction most positive?	(1)
	X	A	(1)
	×	В	
	×	C	
	X	D	
		(Total for Question 3)	marks)

18 Which of the following successive ionization energies (values in kJ mol⁻¹) could have come from a transition element?

(Total for Question = 1 mark)

19 Which of the following gives the electronic configuration for chromium and for the Cr³⁺ ion?

		Cr	Cr ³⁺
×	A	$[Ar]3d^44s^2$	$[Ar]3d^34s^0$
X	В	[Ar]3d ⁵ 4s ¹	[Ar]3d ² 4s ¹
×	C	[Ar]3d ⁵ 4s ¹	[Ar]3d ³ 4s ⁰
×	D	[Ar]3d ⁴ 4s ²	[Ar]3d ¹ 4s ²

(Total for Question = 1 mark)

- **20** Which of the following gives the colours of solutions containing $Cr_2O_7^{2-}$, CrO_4^{2-} , hydrated Cr^{3+} and hydrated Cr^{2+} , in this order?
 - ☐ A Yellow, orange, green, blue
 - ☑ B Orange, yellow, green, blue
 - C Orange, yellow, blue, green
 - **D** Orange, green, yellow, blue

21 The co	ompound $[Pt(NH_3)_2Cl_2]$ is
\boxtimes A	tetrahedral with no isomers.
\boxtimes B	square planar with no isomers.
■ C	tetrahedral with two isomers.
\square D	square planar with two isomers.
	(Total for Question = 1 mark)
22 The hex	aaquacopper(II) ion, [Cu(H ₂ O) ₆] ²⁺ , is blue because the water ligands
\square A	split the p -orbital energies and p - p electron transitions emit blue light.
\boxtimes B	split the d -orbital energies and d - d electron transitions absorb all but blue light.
\boxtimes C	split the p -orbital energies and p - p electron transitions absorb all but blue light.
\square D	split the d -orbital energies and d - d electron transitions emit blue light.
	(Total for Question = 1 mark)
23 Var	adium is classified as a transition metal. This is because vanadium
× A	is a d-block element.
⊠ B	has incompletely filled d orbitals.
⊠ C	forms stable ions with incompletely filled d orbitals.
	forms stable ions in which it has different oxidation states.
	(Total for Question = 1 mark)

24 Co	opp	er(II) sulfate solution is blue. This is because
×	A	excited electrons emit light in the blue region of the spectrum as they drop back to the ground state.
×	В	excited electrons emit light in the red region of the spectrum as they drop back to the ground state.
\boxtimes	C	electrons absorb light in the red region of the spectrum and the residual frequencies are observed.
\boxtimes	D	electrons absorb light in the blue region of the spectrum and the residual frequencies are observed.
		(Total for Question = 1 mark)
ch	lora	method of manufacturing hydrazine (N_2H_4) involves the action of sodium te(I) on excess ammonia at 443 K and 50 atm. The yield is normally around 80% just 1 part per million of copper(II) ions is present, the yield drops to 30%.
Th	e m	ost likely explanation for this is the ability of copper(II) ions to
X	A	form complex ions with ammonia.
X	В	catalyse reactions producing other nitrogen compounds.
X	C	reduce the hydrazine as it is formed.
X	D	reduce the sodium chlorate(I).
		(Total for Question = 1 mark)

26	Platinum forms a complex with the formula $Pt(NH_3)_2Cl_2$ and chromium forms a complex ion with the formula $CrCl_4^-$.							
	(a) Co	nsidering the shapes of these complexes,	(1)					
	⊠ A	both complexes are square planar.	(1)					
	■ B	both complexes are tetrahedral.						
		Pt(NH ₃) ₂ Cl ₂ is tetrahedral and CrCl ₄ ⁻ is square planar.						
	■ D	Pt(NH ₃) ₂ Cl ₂ is square planar and CrCl ₄ ⁻ is tetrahedral.						
	(b) Co	nsidering the structures of these complexes,	(1)					
	⊠ A	both complexes form stereoisomers.						
	⊠ B	neither complex forms a stereoisomer.						
	⊠ C	Pt(NH ₃) ₂ Cl ₂ forms a stereoisomer but CrCl ₄ ⁻ does not.						
	⊠ D	CrCl ₄ ⁻ forms a stereoisomer but Pt(NH ₃) ₂ Cl ₂ does not.						
		nsidering the bonding between the central atom and the ligands in these mplexes,	(1)					
	⊠ A	the bonding in both complexes is dative covalent.	(1)					
	■ B	the bonding in both complexes is ionic.						
		the bonding in Pt(NH ₃) ₂ Cl ₂ is dative covalent and in CrCl ₄ ⁻ is ionic.						
	⊠ D	the bonding in $Pt(NH_3)_2Cl_2$ is ionic and in $CrCl_4^-$ is dative covalent.						
		(Total for Question = 3 mark	s)					

			ansition metal complex $Pt(NH_3)_2Cl_2$ exists as two geometric isomers. This is the complex
	×	A	is square-planar.
	×	В	is tetrahedral.
	X	C	contains a double bond.
	×	D	is octahedral.
			(Total for Question 1 mark)
28 A hydrated transition metal ion is colourless. Which of the electronic configuration of this ion?			ed transition metal ion is colourless. Which of the following could be the configuration of this ion?
	$\boxtimes A$	[A	$ar = 3d^54s^2$
	× F	B [A	ar] $3d^8$
	\boxtimes (C [A	$ar = 3d^{10}4s^2$
	$\overline{\times}$ I) [A	$ar] 3d^{10}$
			(Total for Question 1 mark)
29 Which of the following species is not able to act as a ligand in the format transition metal complexes?			h of the following species is not able to act as a ligand in the formation of on metal complexes?
	×	A	$C_6H_5NH_2$
	×	В	NH_3
	X] C	NH ₂ CH ₂ CH ₂ CH ₂ NH ₂
	X	D	$\mathrm{NH_4}^+$
			(Total for Question 1 mark)

3		element zinc, with electronic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² , is not regarded ransition element because
	\square A	the oxide of zinc is amphoteric.
	■ B	none of its ions has an unpaired electron in the <i>d</i> -subshell.
	⊠ C	it does not readily form complex ions.
	■ D	it has a boiling temperature low enough for it to be easily distilled.
		(Total for Question 1 mark)
31	What (Cu(H ₂ 0	type of bonding occurs between the metal ion and ligand in the complex ion $O_{6}]^{2+}$?
	\square A	Metallic
	\square B	Ionic
	□ C	Hydrogen
	■ D	Dative covalent
		(Total for Question 1 mark)