Question Number	Acceptable Answers	Reject	Mark
1(a)	First mark Electronic configurations: Cu^{2+} is [Ar] 3d ${ }^{9}$ and Zn^{2+} is [Ar] 3d d^{10} IGNORE 45° / full electronic configuration of Ar Second mark If both EC are correct: EITHER Copper (is a transition element because it) forms a (stable) ion with an incompletely / partially filled d-subshell / orbital(s) ALLOW forms an ion with unpaired d electron(s) OR Zinc only forms an ion with a full d-subshell / all d orbitals full If one or both EC are incorrect: Copper (is a transition element because it) forms a (stable) ion with an incompletely filled d-subshell / orbital(s) and zinc only forms an ion with a full d-subshell / all d orbitals full (1)	d shell sub- shell / orbital other than 3d	(2)

Question Number	Acceptable Answers	Reject	Mark
1(b)	```\(\mathrm{CuCl}+\mathrm{AgCl} \rightleftharpoons \mathrm{CuCl}_{2}+\mathrm{Ag}\) OR \(\mathrm{Cu}^{+}+\mathrm{Ag}^{+} \rightleftharpoons \mathrm{Cu}^{2+}+\mathrm{Ag}\) OR \(\mathrm{CuCl}+\mathrm{Ag}^{+} \rightleftharpoons \mathrm{Cu}^{2+}+\mathrm{Ag}+\mathrm{Cl}^{-}\)``` ALLOW \rightarrow IGNORE state symbols / half-equations Stand alone mark (Equilibrium moves to the right in sunlight) producing silver IGNORE copper(II) compounds	Copper (metal)/ copper(I) compounds	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (i)}$	Ni: $\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2} \quad$ (1)		2
	$\mathrm{Cu}:\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1} \quad$ (1)	ALLOW capital letters, subscripts for superscripts ALLOW 4s before 3d Penalise omission of $3 s^{2} 3 p^{6}$ once only if rest is correct	

Question Number	Acceptable Answers	Reject	Mark
2*(ii)	First electron removed is from 4s (in both atoms)		2
	Second electron in Cu (is harder to remove so it is) EITHER closer to nucleus/in inner shell OR less shielded	(1)	IGNORE Comments about second electron being in full shell/ in a 3d shell/in a 3d orbital Reference to 3d ${ }^{10}$ stability

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 a (i i i)}$	(attraction on (3d) electrons increases due to) number of protons increasing / nuclear charge increasing	1	
IGNORE The charge density of the 2^{+}ions increases Effective nuclear charge		1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 b (i)}$	$2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})$ IGNORE Eqm sign for \rightarrow	Reverse equation Any equation involving electrons	1

Question Number	Acceptable Answers	Reject	Mark
2b(ii)	Both white ALLOW (both) Colourless COMMENT Ignore states eg solution/precipitate As have 3d ${ }^{10}$ / have a full 3d sub-shell /ALL 3d orbitals are full IGNORE (1) Does not have partially filled d orbitals They do not absorb light No d-d transitions occur	2	2

Question Number	Acceptable Answers	Reject	Mark
2c	(Zinc) does not form a (stable) ion with incompletely/partially filled d orbitals	Element has full d shells.	1
ALLOw d sub-shell for d orbitals The only (stable) ion formed by zinc has full d sub-shell It does not form a (stable) oxidation state with incompletely/partially filled d orbitals			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) ~}$	(A transition metal) forms ions / oxidation states with partially filled /incomplete d orbital(s) / d sub-shell	1	

Question Number	Acceptable Answers	Reject	Mark
	$\begin{align*} & \mathbf{W}=\text { chromate(VI) (ion) } / \mathrm{CrO}_{4}{ }^{2-} \tag{1}\\ & \mathbf{X}=\text { chromium }(\mathrm{III}) \text { hydroxide } / \mathrm{Cr}(\mathrm{OH})_{3} / \\ & \mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \tag{1}\\ & \mathbf{Y}=\text { hexahydroxochromate(III) (ions) } \\ & {\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-} / \text { tetrahydroxochromate(III) }} \\ & (\text { ions }) /\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-} /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-} \\ & \mathbf{(1)} \\ & \mathbf{Z}=\text { chromium }(\mathrm{II}) \text { (ions) } / \text { chromium(II) } \\ & \text { sulfate } / \mathrm{Cr}^{2+} / \mathrm{Cr}^{2+}(\mathrm{aq}) /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \text { (1) } \end{align*}$ ALLOW Name or formula of the compounds IGNORE Omission of square brackets around complexes	Names without oxidation numbers.	4

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{r} 3 \tag{1}\\ \text { (b) }(\mathrm{ii}) \end{array}$	A = ethanol / $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} /$ ethanal / $\mathrm{CH}_{3} \mathrm{CHO}$ OR any primary or secondary alcohol or any aldehyde $\mathbf{B}=\text { zinc } / \mathrm{Zn}$ ALLOW magnesium / Mg $\begin{equation*} \mathbf{C}=\text { any acid (name or formula) } \tag{1} \end{equation*}$ IGNORE Omission of (aq) with acid formula Concentration of acid	$\mathrm{CH}_{3} \mathrm{COH}$ Alkali metals Tin / Sn H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$or acid	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$		1
(b)(iii)	OR Multiples Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ (1) (b)(iv) Allow multiples Chromium is reduced from (+)6 to (+)3 (1) Nitrogen is oxidized from -3 to 0 (1)	3	
	Penalise use of 'changes' / 'increases' / 'decreases' for 'oxidises' or 'reduces' once only		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	(chromium(II) ions) oxidized by (b) (v) (oxygen in the) air ALLOW Just 'oxygen'	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) (i) ~}$	(A ligand is a) molecule or (negative) ion with a (lone) pair (of electrons) ALLOW Species / Compound / group (1) Which forms a dative covalent bond with a (central) metal ion or atom (to form a complex) ALLOW (if no other marked scored) Electron pair donor	2	

Question Number	Acceptable Answers	Reject	Mark
$\begin{gathered} 3 \\ \text { (c) }(\mathrm{ii}) \end{gathered}$	$\begin{align*} & \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+6 \mathrm{NH}_{3} \\ & \mathrm{ALLOW} \quad \rightarrow \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}+6 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+ \\ & \\ & \tag{1}\\ & \\ & \rightarrow \mathrm{NH}_{3} \\ & \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{3+}+4 \mathrm{H}_{2} \mathrm{O} \end{align*}$ Correct formula for ammine Rest of the equation correct	$\begin{aligned} & \mathrm{Cr}^{3+} \text { and } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a)}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}\left(4 s^{0}\right)(\mathbf{1)}$ Accept $[\mathrm{Ar}] 3 \mathrm{~d}^{5}\left(4 \mathrm{~s}^{0}\right)$	$\mathbf{2}$	
(Ion) has an incompletely filled (3)d-orbital / sub-shell / unpaired d electron (1)			

Question Number	Acceptable Answers	Reject	Mark
*4 (b)	Gases adsorb onto / bind to catalyst (surface) (1) Allow gases are absorbed onto surface Then react and desorb / leave (1) Reaction could be faster because Any two - These processes lower the activation energy (by providing an alternative route so a greater proportion of molecules react) - Bonds in reactant(s) are weakened - Reactants may be positioned in more favourable orientations - Reactants can migrate towards each other on surface - Increases likelihood of molecules coming into contact / colliding - Adsorption onto surface means more reactant molecules in a given space	Just 'bonds in reactants are broken'	4

Question Number	Acceptable Answers	Reject	Mark
4 (c)	$E_{\text {cell }}$ for reaction is (+) $0.84(\mathrm{~V})$ (so will work) / $E_{\text {cell }}$ for item 44 is more positive than for item 19 / illustrate using anti-clockwise rule (1) $2 \mathrm{Fe}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}^{2+}+4 \mathrm{OH}^{-}$ or $2 \mathrm{Fe}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{2}(\mathbf{1})$ $E_{\text {cell }}$ for reaction is (+)0.96 (V) (so will work) / $E_{\text {cell }}$ for item 44 is more positive than for item 17 / illustrate using anti-clockwise rule (1) $4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3} \text { (1) }$	Just 'because of the anti-clockwise rule'	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (d)}$	Lone pair(s) (from nitrogen(s)) (1) Forms dative / dative covalent / coordinate bond (with Fe^{2+})(1)	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
5(a)(i)	Any TWO of: complex ions / complexes (1) coloured ions / compounds / solutions (1) catalytic properties (1) paramagnetic (1) Allow coloured complexes (2) coloured complex compound (1) If a list appears with 1 or 2 correct properties followed by properties related to the element, then (1) mark only Ignore 'partially filled d-orbitals'	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
5(a)(ii)	 ignore absence of charge clearly octahedral (ignore bonds to the H in $\mathrm{H}_{2} \mathrm{O}$) (1) but allow some latitude in the symbols used to show the 3D structure. Wedges do not have to be exact - if used they are enough to show 3D if the axial bonds are lines The word 'octahedral' does not salvage a poor drawing dative (covalent) / coordinate (bond) (1) not just shown by an arrow lone pair (of electrons on the oxygen) (1) can be shown on the diagram		3

Question Number	Acceptable Answers	Reject	Mark
5(b)(i)	$(+) 0.34(V)$ OR (+) 0,34 V sign not needed		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
5(b)(ii) QWC	(simultaneous) oxidation and reduction (1) Allow redox a species / substance / reactant / compound / chemical / element (1)		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
5(b)(iii)	$-0.66(\mathrm{~V})(1)$		$\mathbf{2}$
	Allow TE from (b)(i) reaction not feasible since the potential is negative (2nd mark is for an answer consistent with sign of E°)(1)		

