1. (a)

(b) (i) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(ii) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Mn}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}+4 \mathrm{H}_{2} \mathrm{O}$
or
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}{ }^{+}$
or
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Mn}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
or
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Mn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$
Any of above score 2 marks as follows:(1) mark for species (1) mark for balance
Deprotonation or Acid /base (1)
(iii) ($\mathrm{Mn}(\mathrm{II})$ is) oxidised / undergoes oxidation (1)
to Mn(IV) / Mn(III) / to higher oxidation state/ will increase (1)
Variable oxidation states (1)
coloured compounds (1)
4
(c) (i) from +4 to $+6 /$ up by $2 /+2 \quad 1$
(ii) Amount of $\mathrm{KMnO}_{4}=0.0228 \times 0.0216 \mathrm{~mol} \quad 1$
$=4.925 \times 10^{-4} \mathrm{~mol}$
(iii) Amount of $\mathrm{SO}_{3}{ }^{2-}$ in $25 \mathrm{~cm}^{3}=5 / 2 \times 4.925 \times 10^{-4} \mathrm{~mol}$
$=1.231 \times 10^{-3} \mathrm{~mol}$
(iv) Amount of $\mathrm{SO}_{3}{ }^{2-}$ in $250 \mathrm{~cm}^{3}=10 \times 1.231 \times 10^{-3} \mathrm{~mol}$ (1)
$=1.231 \times 10^{-2} \mathrm{~mol}$
Mass of pure $\mathrm{Na}_{2} \mathrm{SO}_{3}=126 \times 1.231 \times 10^{-2} \mathrm{~g}$ (1)
$=1.551 \mathrm{~g}$
2
(v) Purity of sample $=(1.551 \mathrm{~g} / 1.75 \mathrm{~g}) \times 100 \%$
= 88.6\%
1
2. (a) (i) The potential difference between a standard hydrogen electrode and the (half-) cell (1) all concentrations measured at $1 \mathrm{~mol} \mathrm{dm}^{-3}$ and any gases are at 1 atm pressure (1)
(ii) Fluorine or $\mathrm{F}_{2}(\mathbf{1})$
(b) (i) all/listed (1)
(ii) iodine and bromine (1)
(iii) This answer is consequential on part (ii)

Mix solution of $\mathrm{Cr}(\mathrm{II})$ - blue with the oxidising agent given in (ii) (1) goes green and stays green / but does not go orange (1)
3. (a)

Cr^{3+} consequential on structure for Cr
(b) Electronic configuration differs from previous element by an electron in a d (sub) shell / electrons are filling the d-shell (1) transition elements have one ion with partially-filled d-shell (1)

Not 'highest energy shell is the ' d '-shell outer electron in ‘d’ shell
(c)

2
Correct electron structure for complex ion (1)
ligand electrons identified (1) 6 pairs identified stand alone mark
Consequential on structure of Cr^{3+}

There must be some attempt to show a 3-D structure 'Octahedral' could rescue a poor diagram
(iii) d-orbitals split (in energy by ligands) / or diagram to illustrate electron transitions / jumps from lower to higher energy level (1) absorbs light in visible region (1)
(d) (i) Green precipitate (1) (deep) green solution in excess sodium hydroxide (1)
(ii) Deprotonation / acid base (1) 1
4. (a) (i) $\quad[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ (1) allow $1 s^{2}$ etc
(b) (i) • $\mathrm{Zn} / \operatorname{Iron}(1)$ not the zinc ion or iron ion

- more negative potential than -0.28 V (1)

NB this mark must show evidence of use of the data gives $+E$ for reduction reaction (1)
consequential on second mark
(ii) • rate too slow / activation energy too high / kinetically stable / allow oxide layer if metal electrode specified (1)

- non-standard conditions (1)
(c) (i) $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ (1)
(ii) Example:
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CoCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
Any valid equation that shows a ligand exchange but begins with $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ (1)
ligand exchange correctly balanced (1) 2

5. (a) An element that has at least one of its ions has an incomplete d shell (1)
(b) (i) Coloured ions / compounds/ complexes/ solutions (1) variable oxidation states (1)
(ii) $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+} /$ hexa aqua chromium (II) ion (1)

Not Cr^{2+} or $\mathrm{Cr}(\mathrm{II})$.

(c) | | (i) | Cr | Cl | $\mathrm{H}_{2} \mathrm{O}$ |
| :---: | :---: | :---: | :---: | :---: |
| | $19.5 / 52$ | $40 / 35.5$ | $40.5 / 18$ (1) | 2 |
| | 0.375 | 1.127 | 2.25 | |
| | $0.375 / 0.375$ | $1.127 / 0.375$ | $2.25 / 0.375$ (1) | |
| | 1 | 3 | 6 | |

(ii) Violet $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+} \cdot 3 \mathrm{Cl}^{-}$(1)

Green is $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2+} 2 \mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O}(\mathbf{1})\right.$
NB for 2 marks must make clear which is which and must be a salt which adds up to $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}$
6.
(a)

(i) \begin{tabular}{|l|l|l|l|l|}
\hline\uparrow \& \uparrow \& \uparrow \& \uparrow \& \uparrow \\
\hline

(ii)

\hline\uparrow \& \uparrow \& \uparrow \& \& \\
\hline
\end{tabular}

1
\square1Allow single headed arrows or other suitable notation[Mark (ii) consequentially on (i)]
(b) (i) Covalent (1)Coordinate or dative (1)2
(ii) Deprotonation or acid-base 1
(iii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$ or $\mathrm{Cr}(\mathrm{OH})_{3}$ 1
(iv) Ligand exchange or ligand substitution 1
(v) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ or $\left[\mathrm{Cr}(\mathrm{OH})_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{y}}\left(\mathrm{NH}_{3}\right)_{\mathrm{z}}\right]^{\text {charge }}$ 1 $x+y+z=6$, z at least one, correct charge will be between 0 and $+3, x=\max 3$
(c) • \mathbf{d} - orbitals/subshell/energy level split (in energy by ligands)/diagram to illustrate (1)

- Electron transitions/jumps from lower to higher energy level (1)
- Absorbs light in visible region/reference to white light (1)

If imply or state that emission is occurring, only the first marking point is available
7.
(a) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8}$
(b)

(1)

Shape mark
Must be 3-D ie wedges or dashes
labelled covalent between $\mathrm{O}-\mathrm{H} \quad \mathrm{OR}$ arrow to H_{2} Oand labelled covalent bond (1)
labelled dative covalent between O atom and ion (1)
(c) (i) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$

ALLOW Ni(OH) ${ }_{2}$
(ii) Deprotonation (1)
two successive deprotonations / neutral species producing insoluble compound (1)
(iii) Ligand exchange (1)
giving (soluble) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0 \text { or } 2}\left(\mathrm{NH}_{3}\right)_{6} \text { or } 4\right]^{2+}$ OR in words (1)
2
8. (a) (i) Use E^{θ} values for reduction of Fe^{3+} to Fe^{2+} by $\mathrm{Zn}\left(\mathrm{E}^{\theta}\right.$ cell $\left.=+1.53 \mathrm{~V}\right)$ (1) and Fe^{2+} to Fe by $\mathrm{Zn}\left(\mathrm{E}^{\theta}\right.$ cell $\left.=+0.32 \mathrm{~V}\right)(\mathbf{1})$
They have positive E^{θ} so are feasible (1) NOT "will happen" OR
ALLOW $\mathrm{Zn}^{2+} / \mathrm{Zn}$ is more negative than both $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ (1) so zinc is a stronger reducing agent (1)
so zinc reducing both is feasible (1)
(ii) Reduction of Fe^{2+} has high activation energy / kinetically stable
(b) (i) $\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

Species (1)
Balance (1)
Any state symbols ignored.
(ii) purple colour of MnO_{4}^{-}lost (1)
end point when yellow / colourless solution (1) becomes (permanently) pink (1)
(c) Amount MnO_{4}^{-}in $1^{\text {st }}$ titration $=0.0182 \mathrm{dm}^{3} \times 0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ $=3.64 \times 10^{-4} \mathrm{~mol}(\mathbf{1})$

Amount Fe^{2+} in original solution $=5 \times$ above value $=1.82 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
Amount Fe^{2+} in $2^{\text {nd }}$ titration $=$ amount of Fe^{2+} and Fe^{3+} original solution (1)
$=0.0253 \mathrm{dm}^{3} \times 0.0200 \mathrm{~mol} \mathrm{dm}^{3} \times 5=2.53 \times 10^{-3} \mathrm{~mol}$
Amount of Fe^{3+} in original solution $=0.00253-0.00182=7.10 \times 10^{-4} \mathrm{~mol}(\mathbf{1})$
Amount zinc needed to reduce $\mathrm{Fe}^{3+}=1 / 2 \times 0.000710=0.000355 \mathrm{~mol}$
Mass of zinc $=0.000355 \mathrm{~mol} \times 65.4 \mathrm{~g} \mathrm{~mol}^{-1}=0.0232 \mathrm{~g}$ (1) 2,3 or 4 SF
Consequential on their moles iron
The marks are for the following processes:
Either volume of MnO_{4}^{-}to moles of $\mathrm{MnO}_{4}{ }^{-}$(1)
Convert to moles of Fe^{2+} by multiplying either moles of MnO_{4}^{-}by 5 (1)
Realising that $2^{\text {nd }}$ titration measures total number of moles of iron (1))
Subtracting to get original moles Fe^{3+} (1)
Going to moles Zn then mass Zn (1)

OR
Volume MnO_{4}^{-}for Fe^{3+}, which has been reduced by zinc (1) $3^{\text {rd }}$ point
$=25.3 \mathrm{~cm}^{3}-18.2 \mathrm{~cm}^{3}=0.0253 \mathrm{dm}^{3}-0.0182 \mathrm{dm}^{3}=0.0071 \mathrm{dm}^{3} \mathbf{(1)} 4^{\text {th }}$ point
Amount of $\mathrm{MnO}_{4}^{-}=0.0071 \mathrm{dm}^{3} \times 0.0200 \mathrm{~mol} \mathrm{dm}^{-3}=1.42 \times 10^{-4} \mathrm{~mol}$ (1) $1^{\text {st }}$ point
Amount Fe^{3+} reduced by zinc $=5 \times$ above value $=7.10 \times 10^{-4} \mathrm{~mol}(\mathbf{1}) 2^{\text {nd }}$ point
Amount zinc needed $=1 / 2 \times 7.10 \times 10^{-4}=3.55 \times 10^{-4} \mathrm{~mol}$ mass of zinc needed $=3.55 \times 10^{-4} \mathrm{~mol} \times 65.4 \mathrm{~g} \mathrm{~mol}^{-1}=0.00232 \mathrm{~g} \mathbf{(1)} 5^{\text {th }}$ point
(d) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$ $\mathrm{H}_{3} \mathrm{O}^{+}$in equation (1) other ion in equation (1) (Fe^{2+}) polarises the $\mathrm{O}-\mathrm{H}$ bond in ligand (1)
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ more acidic than $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ (1)
Fe^{3+} higher charge density than $\mathrm{Fe}^{2+}(\mathbf{1})$
Fe^{3+} ion if more polarising (1)
9. (a) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} \quad$ accept any order 1
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} \quad$ Conseq on (a) (i) $\quad 1$
(b) d-block: last (added) electron is in a d-(sub) shell / orbital (1)

Not transition: does not form ions with partially filled d-(sub) shell / orbitals (1)
(c) 3D-drawing e.g. wedges / hatches or perspective diagram (1)

Labels covalent bond within water molecule (1). This must be drawn out /use of a key is acceptable.
Shows dative covalent bond from water to central Zn^{2+} (1)
Labels a 90° angle (1)
Ignore absence of charge on ion
(d) (i) White precipitate/solid /suspension (1) NOT powder Colourless solution (in excess ammonia) NOT "clear" (1)
(ii) $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{NH}_{4}{ }^{+}$

Or
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$
Or
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Or
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}+4 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$
$\left[\mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
Or
$\mathrm{Zn}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{OH}^{-}$
(1) for cation formed
(1) for balancing equation with the correct species (2)
(e) (i) d-(sub) shell / orbitals are full / 3d ${ }^{10}$ arrangement of electrons (1) No jumps of d-electrons /no d-d transitions (1)
Any mention of e^{-}falling back down or "no splitting of d-orbitals" and second mark is not awarded
(ii) Cr is a transition metal / Cr can have d-d transitions $/ \mathrm{CrO}_{4}{ }^{2-}$ is yellow / $\mathrm{Cr}(+6)$ or $\mathrm{Cr}(\mathrm{VI})$ is yellow
10. (a) (i) $\frac{\mathrm{Fe}[\mathrm{Ar}]}{3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}}$
or $3 \mathrm{~d}_{6} 4 \mathrm{~s}_{2}$
or 3d64s2
or $4 s^{2} 3 d^{6}(\mathbf{1})$
$\frac{\mathrm{Fe}^{2+}[\mathrm{Ar}]}{3 \mathrm{~d}^{6}}$
or $3 d_{6}$
or $3 d^{6} 4 s^{0}(\mathbf{1})$
Letter d must be lower case
Any additional letters of numbers (0)
(ii) The mark is for the shape

OR

Instead of dotted line
ALLOW bond to H of $\mathrm{H}_{2} \mathrm{O}$ (except on left side if OH_{2} is given)
IGNORE charge unless incorrect
(iii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$

OR
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
OR equations with 2 NaOH as reactant and $2 \mathrm{Na}^{+}$as product IGNORE state symbols
(iv) Green precipitate / solid \rightarrow foxy-red / red-brown / brown / orange Both colours and precipitate / solid needed NOT darkens
(v) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow / \rightleftharpoons 2 \mathrm{NH} 3$

$$
\mathrm{ALLONX}+\mathrm{Br}_{7} \rightarrow \mathrm{O}^{\mathrm{Br}}+\mathrm{HBr}
$$

OR equation with Cl_{2}
(b) (i) Emf of cell / potential difference of cell containing Fe^{2+} and Fe (1) and standard hydrogen electrode / half cell NOT 'SHE' $O R$ hydrogen electrode and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}^{+}$and 1 atm H_{2} (1) $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}$

IGNORE temperature

QWC*(ii) Emf of hydrogen electrode is zero - stated or implied (e.g. if calculate $\left.\mathrm{E}_{\text {cell }}=+0.44(\mathrm{~V})\right)(\mathbf{1})$
$\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}(\mathbf{1})-$ equation stand alone
Potential for the reaction is positive so reaction is feasible (1)
OR
H^{+}and $(1 / 2) \mathrm{H}_{2}$ has a more +ve electrode potential than Fe^{2+} and Fe (1)
H^{+}will oxidise $\mathrm{Fe} / \mathrm{H}^{+}$is an oxidising agent / Fe is a reducing
agent for H^{+}/ other correct redox statement (1)
$\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}(\mathbf{1})-$ stand alone
(iii) High E_{a} so slow reaction / reactants are kinetically stable IGNORE any mention of non-standard conditions
(c) $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ or words $\mathrm{E}^{0}=(+\mathbf{0 . 2 3 V}(\mathbf{1})$

So I^{-}would reduce $\mathrm{Fe}^{3+} / \mathrm{Fe}^{3+}$ would oxidise $\mathrm{I}^{-} / \mathrm{E}^{0}$ positive so reaction $\mathrm{L} \rightarrow \mathrm{R}$ (1)
$O R$ reverse argument (2)
OR
Fe^{3+} and Fe^{2+} has a more positive electrode potential than I_{2} and $\mathrm{I}^{-}(\mathbf{1})$
I^{-}will reduce $\mathrm{Fe}^{3+} / \mathrm{Fe}^{3+}$ will oxidise I^{-}(1)
2
11. (a) (i) Forms ions which have partially filled d-orbitals

OR
Forms ions which have a partially filled d-subshell
(ii) Scandiurn / Sc and Zinc / Zn
(b) (i) $\mathrm{Fe}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{Mn}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ (1) for both correct
(ii) $\quad \mathrm{Fe}^{3+}$ is $3 \mathrm{~d}^{5} /$ half filled d-subshell which is more stable than $3 \mathrm{~d}^{6}$ (1) Mn^{2+} is (already) $3 \mathrm{~d}^{5}$ (which is more stable than $3 \mathrm{~d}^{4}$) (1)
(c) Shape (1)

Bonding to correct atoms (1)
(4-)

(4-)
OR

(d) Two As atoms oxidised from +3 to +5 per mole of $\mathrm{As}_{2} \mathrm{O}_{3}$
(loss of $4 \mathrm{e}^{-}$) (1)
\therefore if 5 moles oxidised, total $20 \mathrm{e}^{-}$Lost $/$change in oxidation no. $=20$ (1)
$\therefore 4$ moles $\mathrm{MnO}_{4}{ }^{-}$reduced, total $20 \mathrm{e}^{-}$gained / change in oxidation no. 20
\therefore each Mn(VII) gains $5 \mathrm{e}^{-} /$change in oxidation no. 5 (1)
$\therefore \mathrm{Mn}(\mathrm{ll}) / \mathrm{Mn}^{2+}$ (1) NOT standalone mark
(e) (i) $\mathrm{VO}_{3}^{-}+2 \mathrm{H}^{+} / 2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{VO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} / 3 \mathrm{H}_{2} \mathrm{O}$
(ii) No because oxidation no. of V is +5 in VO_{2}^{+}/ Oxidation no. of V unchanged (at +5)
(iii) First green colour : $\mathrm{VO}_{2}{ }^{+}$and VO^{2+} (1)

Second green colour : $\mathrm{V}^{3+} /\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
Violet colour : $\mathrm{V}^{2+} /\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, (1)
12. (a) $3 \mathrm{OCl}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$(1)
chlorine (in OCl^{-}) is (simultaneously) oxidised from +1 to +5 (1)
and reduced from +1 to -1 (1)
If only oxidation numbers given max 1 (out of 2)
If oxidation numbers omitted max 1 (out of 2)
(b) (i) blue / black to colourless 1
(ii) no. moles $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ used $=12.5 \times 0.1 / 1000=1.25 \times 10^{-3}$ (1)
no. moles $\mathrm{I}_{2}=1.25 \times 10^{-3} / 2=6.25 \times 10^{-4}$ (1)
no. moles $\mathrm{ClO}^{-}=$no. moles $1_{2}(\mathbf{1})$
no. moles ClO^{-}in original $10 \mathrm{~cm}^{3}=10 \times 6.25 \times 10^{-4}$

$$
=6.25 \times 10^{-3}
$$

no. moles ClO^{-}in $1 \mathrm{dm}^{3}=100 \times 6.25 \times 10^{-3}(\mathbf{1})=0.625$
(iii) mass $\mathrm{Cl}_{2}=0.625 \times 71$
$=44.4(\mathrm{~g})$
mark consequentially on (ii) must be 3s.f. in final answer
(c) Cl_{2} is the stronger oxidising agent because Cl_{2} oxidises S from $(+) 2$ to (+)6 (1)
but l_{2} oxidises S from (+)2 to (+)2.50 (1)

QWC (d) O_{2} oxidises $\mathrm{KI} /$ iodide to l_{2}. or balanced equation (1) ll_{2} reacts with starch / paper to give blue / black (1)
13. (a) $[\mathrm{Ar}]$
 (1)
[Ar]

Allow \uparrow instead of \uparrow and \downarrow instead of \downarrow
(b) Forms ion(s) which have a partially OR an incompletely filled d-(sub)shell OR d-orbital(s)
(c) (i) Dative (covalent) OR co-ordinate (1)
(ii) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}_{4}\right)\right]+2 \mathrm{NH}_{4}^{+}$

OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{4}^{+}$
OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH} \rightarrow\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}_{4}\right)\right]+2 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
IGNORE state symbols
IGNORE missing square brackets in any formula
(iii) H^{+}removed (by $\mathrm{NH}_{3} \mathrm{OR} \mathrm{OH}^{-}$) (1)

From $\left(\mathrm{H}_{2} \mathrm{O}\right)$ ligands (1)
NOT just from "complex"
(iv) Ligand exchange

OR ligand replacement
OR ligand substitution
(v) $\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}$

OR
$\mathrm{Ni}(\mathrm{OH})_{2}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-}$
Allow formation of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ OR $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
cation formed (1)
balancing equation (1)
(d) d-orbitals split (in energy) by ligands (1)

QWC
ALLOW d-sublevel
absorbs light (in visible region) (1)
NOT "uv light"
electron is promoted OR electron moves to a higher energy level (1)
Any mention of emission of light can only score $1^{\text {st }}$ mark 3

