M1.(a) Consider experiments 1 and 2: [B constant]
$[A]$ increases $\times 3$: rate increases by 3^{2} therefore 2 nd order with respect to A

Consider experiments 2 and 3 :
[A] increases $\times 2$: rate should increase $\times 2^{2}$ but only increases $\times 2$
Therefore, halving $[B]$ halves rate and so 1st order with respect to B

Rate equation: rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
(b) rate $=k[C]^{2}[D]$ therefore $k=$ rate $/[C]^{2}[D]$
$k=\frac{7.2 \times 10^{-4}}{\left(1.9 \times 10^{-2}\right)^{2} \times\left(3.5 \times 10^{-2}\right)}=57.0$

Allow consequential marking on incorrect transcription
$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~s}^{-1}$
Any order
(c) rate $=57.0 \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}=3.99 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

OR
Their $k \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}$
(d) Reaction occurs when molecules have $E \geq E_{a}$

M2. (a) Antacid OR
to neutralise acidity
OR
eases indigestion
Credit suitable reference to indigestion or to laxative or to relief of constipation
(b) M1 Decrease in T decreases the energy of the particles/ions $/ \mathrm{H}^{+} /$molecules

M2 (also scores M1) Decrease in the number of/less particles/ions/ $\mathrm{H}^{+} /$molecules with $\mathrm{E} \geq \mathrm{E}_{\text {at }}$ or $\mathrm{E} \geq$ minimum energy to react

In M1 and M2, credit "atoms" but ignore "calcium carbonate", ignore "calcium", ignore any ion formula except H^{+}

M3 Few(er)/Less effective/productive/successful collisions QoL
(c) (i) Strontium has a higher melting point than barium, because

Correct reference to size of cations/proximity of electrons M1 (For Sr) delocalised electrons closer to cations/positive ions/atoms/nucleus

OR

cations/positive ions/atoms are smaller

OR

> cation/positive ion/atom or it has fewer (electron) shells/levels
> Ignore general Group 2 statements
> Penalise M1 if Sr or Ba is said to have more or less delocalised electrons
> Ignore reference to shielding
> CE $=\mathbf{0}$ for reference to molecules or intermolecular forces or covalent bonds

Relative strength of metallic bonding

M2 (Sr) has stronger attraction between the cations/positive ions/ atoms/nucleus and the delocalised electrons

OR

stronger metallic bonding
(assume argument refers to Sr but accept converse argument for Ba) 2 Ignore "Van der Waals forces (between atoms)" but penalise if "between molecules"
(ii) $\mathrm{Sr}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2}$

Or multiples
(d) $\mathbf{2 M g}+\mathrm{TiCl}_{4} \rightarrow \mathbf{2} \mathrm{MgCl}_{2}+\mathrm{Ti}$

Or multiples

M3.(a) Amount / number / proportion / percentage / fraction / moles of molecules / particles Penalise an incorrect qualification of the number eg NOT number of molecules with E greater than Ea.
Not 'atoms'.
(b) There are no molecules / particles with zero energy

OR

All of the molecules / particles are moving / have some energy
Not 'atoms'.
The answer should relate the energy to the molecules.
(c) \mathbf{C} (The most probable energy)
(d) M1 The peak of the new curve is displaced to the right and lower than the original

M2 All of the following needed

- The new curve starts at the origin and should begin to separate from the original almost immediately
- and the new curve only crosses the original curve once
- and the total area under the new curve is approximately the same as the original
- and an attempt has been made to draw the new curve correctly towards the axis above the original curve but not to touch the original curve
(e) None / no effect / stays the same

M4.(a) Number / proportion / percentage / fraction of molecules Ignore "particles"
(b) None $O \boldsymbol{R}$ no effect $O \boldsymbol{R}$ no change
(c) \mathbf{X}
(d) Answers in either order

M1 collision OR collide
Mark independently
M2 collision / molecules / particles
Ignore "correct" amount of energy
with the activation energy
$O R$ with $E \geq E_{\text {at }}$
OR with sufficient/enough energy
$O R$ with the minimum energy
$\mathbf{O R}$ with the correct orientation
(e) A small increase in temperature results in many more / much higher proportion of / a lot more / significantly more molecules / particles / collisions with $E \geq E_{\text {ad }}$ / energy greater than the activation energy / sufficient energy / enough energy / minimum energy to react
(compared with a small increase in concentration)
Not just "more molecules with $E \geq E_{a d "}$
The answer must convey that the increase is significant
Accept reference to "atoms", "molecules", "particles"
Ignore "species"

M5.(a) As concentration increases the amount of heat given out increases / temperature increases (M1)

Any order.
Ignore references to an exothermic reaction.

More successful collisions or reactions in a given time OR more particles have the activation energy (M2)

Allow could be a second / $n^{\text {th }}$ order reaction.
(An increase in temperature or more heat given out) increases the rate of a reaction (M3)
(b) The magnesium is coated with an oxide / MgO (M1)

Allow magnesium hydroxide.

MgO / the coating / the corrosion product has to be removed before Mg will react
OR Mg and $\mathrm{MgO} /$ the coating / the corrosion product react at different rates OR Initially MgO / the coating / the corrosion product reacts not Mg (M2)

Ignore inert coating.
(c) Any two from:

Any order.
Slower with hot water or faster with steam
The hot water produces $\mathrm{Mg}(\mathrm{OH})_{2}$ / the hydroxide OR steam produces MgO / the oxide
(Slow) bubbling with hot water OR bright white light / flame / white solid with steam
(d) Magnesium sulfate is soluble and calcium sulfate is insoluble / slightly soluble
/ magnesium sulfate is more soluble / calcium sulfate is less soluble / correct trend in solubility (M1)

Any order.
M1 requires a comparison of the two solubilities.
Calcium sulfate coats the surface of the calcium (M2)
Coating prevents further contact with / reaction by the acid (M3)
‘Calcium sulfate forms a protective coating’ scores M2 only.

M6. (a) Award in either order for curve
"Steeper" requires line to be on the left of the original line, starting from the origin

M1 curve is steeper than original and starts at the origin
M2 curve levels at the top line on the graph
(b) Award in either order for curve
"Shallower" requires line to be on the right of the original line, starting from the origin

M1 curve is shallower than original and starts at the origin
M2 curve levels at the first line on the graph
2
(c) M1 curve would be steeper than original
"Steeper" requires line to be on the left of the original line, starting from the origin

M2 curve levels at the same original volume of O_{2}
(d) M1 The (concentration / amount of) ${\underline{\mathrm{H}_{2} \mathrm{O}_{2}} \text { or reactant falls / decreases / used up }}_{\text {(d) }}$ Mark independently

OR
The number of $\underline{H}_{2} \underline{O}_{2}$ or reactant molecules/ particles falls / decreases

M2
The rate of reaction / rate of decomposition / rate of formation of oxygen / frequency of collisions / (effective) collisions in a given time decreases / is slower
(e) (i) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Ignore state symbols
Accept only this equation or its multiples
Extra species must be crossed through
(ii) hydrogen bromide / it does not appear in the overall equation

OR

hydrogen bromide / it is not used up in the reaction / unchanged at the end of the reaction

OR
hydrogen bromide / it is regenerated / re-formed (in Step 2)
1

