M1. (a)	Diagram of an Fe ³⁺ / Fe ²⁺ electrode that includes the following parts labelled: Solution containing Fe ²⁺ and Fe ³⁺ ions		
	Platinum electrode connected to one terminal of a voltmeter Must be in the solution of iron ions (one type will suffice)	1	
	Salt bridge Do not allow incorrect material for salt bridge and salt bridge must be in the solution (ie it must be shown crossing a meniscus)	1	
	298 K and 100 kPa / 1 bar	1	
	all solutions unit / 1 mol dm⁻³ concentration Allow zero current / high resistance voltmeter as alternative to M4 or M5 Ignore hydrogen electrode even if incorrect	1	
(b)) $Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$ Ignore state symbols	1	
	Fe Fe ²⁺ Cu ²⁺ Cu correct order Allow Cu Cu ²⁺ Fe ²⁺ Fe	1	
	Phase boundaries and salt bridge correct, no Pt Allow single / double dashed line for salt bridge Penalise phase boundary at either electrode end Can only score M3 if M2 correct	1	

Copper electrode *Allow any reference to copper*

(c) $E^{\Theta} \operatorname{Au}^{+}(/\operatorname{Au}) > E^{\Theta} \operatorname{O}_{2}(/\operatorname{H}_{2}\operatorname{O})$ *Allow E cell / e.m.f.* = 0.45 V *Allow 1.68 > 1.23*

> So Au⁺ ions will oxidise water / water reduces Au⁺ QoL

 $2Au^{+} + H_2O \rightarrow 2Au + \frac{1}{2}O_2 + 2H^{+}$ Allow multiples

(d) E[⊕] Ag⁺(/ Ag) > E[⊕] Fe²⁺(/ Fe) Allow E cell / e.m.f. = 1.24 Allow 0.80 > -0.44

> And $E^{\circ} \operatorname{Ag}^{+}(/\operatorname{Ag}) > E^{\circ} \operatorname{Fe}^{3+}(/\operatorname{Fe}^{2+})$ *Allow E cell / e.m.f.* = 0.03 *Allow 0.80* > 0.77

So silver ions will oxidise iron (to iron(II) ions) and then oxidise Fe(II) ions (further to Fe(III) ions producing silver metal) Allow Ag⁺ ions will oxidise iron to iron(III)

[15]

1

1

1

1

1

1

1

- M2.(a) Electron acceptor / gains electrons / takes electrons away Do not allow electron pair acceptor / gain of electrons / definition of redox (QWC)
- 1

1

1

1

1

1

1

1

(b) Cd(OH)₂

Do not allow 'Cd(OH)₂/Cd'

Species (on LHS) with the least positive/most negative electrode potential / lowest ${\it E}$ / smallest ${\it E}$

Only allow this mark if M1 answer given correctly or blank Do not allow negative emf

- (c) (i) 1.5 (V) / 1.50
 - (ii) $2MnO_2 + 2H_2O + Zn \rightarrow 2MnO(OH) + 2OH^- + Zn^{2+}$ Ignore state symbols e^- must be cancelled (take care that Zn^{2+} is on RHS)
 - (iii) Allows <u>ions</u> to pass (through it) or words to that effect *Penalise passage of electrons Allow mention of particular ions*
 - (iv) Allows electrons to flow / makes electrical contact / conductor Allow acts as an (inert) electrode / anode / cathode
 - (v) Zn is 'used up' / has reacted / oxidised
 Allow idea that zinc <u>reacts</u>
 Do not allow just zinc corrodes

 $2Ni(OH)_2 + Cd(OH)_2 \rightarrow 2NiO(OH) + Cd + 2H_2O$ For correct nickel and cadmium species in correct order (allow H₂O missing and OH not cancelled) 1 For balanced equation (also scores M2) Allow max 1 for M2 and M3 if correct balanced equation but reversed. Ignore state symbols 1 (ii) Metal / metal compounds are re-used / supplies are not depleted / It (the cell) can be re-used Allow does not leak / no landfill problems / less mining / less energy to extract metals / less waste Do not allow less CO₂ unless explained 1 (e) (i) $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ Allow C₂H₆O 1 $C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$ (ii) Allow C₂H₆O 1 (iii) (+)0.23 (V) 1

(iv) <u>CO</u>₂ released by combustion / fermentation / fuel cell / reaction with water Can be answered with the aid of equations

1

1

1

M3. (a)	loses electrons / donates electrons	
		1
(b)	Zn	
	(most) negative <i>E</i> ° / lowest <i>E</i> ° / least positive can only score M2 if M1 correct do not allow e.m.f instead of <i>E</i> °	1
(c)	$\underline{E}^{\circ} \mathbf{F}_{2} (/F^{-}) > \underline{E}^{\circ} \mathbf{O}_{2} (/H_{2}O)$ or e.m.f is positive or e.m.f = 1.64 V	1
	Fluorine reacts to form oxygen (can score from equation in M3 even if equation unbalanced provided no contradiction) or fluorine oxidises water or fluorine is a more powerful oxidising agent than oxygen	1
	$2F_2 + 2H_2O \rightarrow 4F^- + 4H^+ + O_2$ allow 4HF in equation balanced equation scores M2 and M3	1
(d)	 (i) order correct Zn Zn²⁺ Ag₂O Ag or reverse of this order ignore ss , H⁺ and H₂O, no. of moles 	1
	all phase boundaries correct allow Zn Zn²+ Ag₂O,Ag or Zn Zn²+ Ag₂O H+ Ag for M1 & M2	
	e.g. Zn Zn²+ Ag₂O Ag or Ag Ag₂O Zn²+ Zn scores 2 M2 cannot be gained unless M1 scored	

allow H^* either side of Ag_2O with comma or |

for M2 penalise

- wrong phase boundary (allow dashed lines for salt bridge)
- Pt
- use of + (from half equation)
- water/H⁺ outside Ag in Ag electrode

(ii) 1.1 (V)

Allow no units, penalise wrong units allow correct answer even if no answer to (d)(i) or answer to (d)(i) incorrect allow -1.1 if silver electrode on Left in (d)(i) even if the species are in the wrong order.

 (iii) <u>Reaction(s)</u> not reversible or H₂O electrolyses do not allow hard to reverse mention of primary cell is not enough to show that reaction(s) are irreversible

(e)	(i)	–0.46 (V)
		Allow no units, penalise wrong units

(ii) $2PbSO_4 + 2H_2O \rightarrow Pb + PbO_2 + 2HSO_4^- + 2H^+$

lead species correct on correct sides of equation

equation balanced and includes H₂O,

HSO₄⁻ and H+ (or H₂SO₄) allow ions / species must be fully cancelled out or combined allow 1/2 for balanced reverse equation

(f) (i) reagents / PbO₂ / H₂SO₄ /acid / ions used up (or concentration decreases)

1

1

1

1

1

1

1

(ii) fuel cell

		Ignore any other words	1
		(iii) reagents / fuel supplied continuously	1
		concentrations (of reagents) remain constant	1 [17]
M4.		(a) 1.4 V Allow + or –	1
	(b)	$2NiO(OH) + 2H_2O + Cd \rightarrow 2Ni(OH)_2 + Cd(OH)_2$ Mark for species, Deduct a mark for additional spe (eg OH) but allow balance mark	cies 1
		Balanced If equation is reversed CE=0	1
	(c)	NiO(OH) or Ni(III) or nickel	1
		+3 Allow conseq on wrong species	1 [5]