M1.(a) Diagram of an $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ electrode that includes the following parts labelled: Solution containing Fe^{2+} and Fe^{3+} ions

Platinum electrode connected to one terminal of a voltmeter Must be in the solution of iron ions (one type will suffice)

Salt bridge
Do not allow incorrect material for salt bridge and salt bridge must be in the solution (ie it must be shown crossing a meniscus)
all solutions unit / $1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration
Allow zero current / high resistance voltmeter as alternative to M4 or M5
Ignore hydrogen electrode even if incorrect
(b) $\mathrm{Cu}^{2+}+\mathrm{Fe} \rightarrow \mathrm{Cu}+\mathrm{Fe}^{2+}$

Ignore state symbols
$\begin{aligned} & \mathrm{Fe}\left|\mathrm{Fe}^{2+}\right|\left|\mathrm{Cu}^{2+}\right| \mathrm{Cu} \text { correct order } \\ & \text { Allow } \mathrm{Cu}\left|\mathrm{Cu}^{2+}\right|\left|\mathrm{Fe}^{2+}\right| \mathrm{Fe}\end{aligned}$

Phase boundaries and salt bridge correct, no Pt
Allow single / double dashed line for salt bridge
Penalise phase boundary at either electrode end
Can only score M3 if M2 correct

Copper electrode
Allow any reference to copper
(c) $\quad E^{\ominus} \mathrm{Au}^{+}(/ \mathrm{Au})>E^{\ominus} \mathrm{O}_{2}\left(/ \mathrm{H}_{2} \mathrm{O}\right)$

Allow E cell / e.m.f. $=0.45 \mathrm{~V}$
Allow 1.68 > 1.23

So Au^{+}ions will oxidise water / water reduces Au^{+} QoL

$$
2 \mathrm{Au}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Au}+\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}
$$

(d) $\quad E^{\ominus} \mathrm{Ag}^{+}(/ \mathrm{Ag})>E^{\ominus} \mathrm{Fe}^{2+}(/ \mathrm{Fe})$

Allow E cell / e.m.f. = 1.24
Allow $0.80>-0.44$

And $E^{\ominus} \mathrm{Ag}^{+}(/ \mathrm{Ag})>E^{\ominus} \mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)$
Allow E cell / e.m.f. $=0.03$
Allow $0.80>0.77$

So silver ions will oxidise iron (to iron(II) ions) and then oxidise Fe (II) ions (further to Fe (III) ions producing silver metal)

Allow Ag^{+}ions will oxidise iron to iron(III)

M2.(a) Electron acceptor / gains electrons / takes electrons away Do not allow electron pair acceptor / gain of electrons / definition of redox (QWC)
(b) $\mathrm{Cd}(\mathrm{OH})_{2}$

Do not allow 'Cd(OH),/Cd'

Species (on LHS) with the least positive/most negative electrode potential / lowest E / smallest E

Only allow this mark if M1 answer given correctly or blank Do not allow negative emf
(c) (i) $1.5(\mathrm{~V}) / 1.50$
(ii) $2 \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Zn} \rightarrow 2 \mathrm{MnO}(\mathrm{OH})+2 \mathrm{OH}^{-}+\mathrm{Zn}^{2+}$

Ignore state symbols
e^{-}must be cancelled
(take care that Zn^{2+} is on RHS)
(iii) Allows ions to pass (through it) or words to that effect

Penalise passage of electrons
Allow mention of particular ions
(iv) Allows electrons to flow / makes electrical contact / conductor

Allow acts as an (inert) electrode / anode / cathode
(v) Zn is 'used up' / has reacted / oxidised

Allow idea that zinc reacts
Do not allow just zinc corrodes
(d) (i) $3 /+3 /$ III

$$
2 \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Cd}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{NiO}(\mathrm{OH})+\mathrm{Cd}+2 \mathrm{H}_{2} \mathrm{O}
$$

For correct nickel and cadmium species in correct order (allow $\mathrm{H}_{2} \mathrm{O}$ missing and OH not cancelled)

For balanced equation (also scores M2)
Allow max 1 for M2 and M3 if correct balanced equation but reversed.
Ignore state symbols
(ii) Metal / metal compounds are re-used / supplies are not depleted / It (the cell) can be re-used

Allow does not leak / no landfill problems / less mining / less energy to extract metals / less waste
Do not allow less CO_{2} unless explained
(e) (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Allow $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CO}_{2}+12 \mathrm{H}^{+}+12 \mathrm{e}^{-}$

Allow $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(iii) $\quad(+) 0.23(\mathrm{~V})$
(iv) $\underline{\mathrm{CO}_{2}}$ released by combustion / fermentation / fuel cell / reaction with water Can be answered with the aid of equations

M3.(a) loses electrons / donates electrons
penalise donates electron pair
(b) Zn
(most) negative $E^{\circ} /$ lowest $E^{\circ} /$ least positive
can only score $M 2$ if $M 1$ correct
do not allow e.m.f instead of E°
(most) negative $E^{\circ} /$ lowest $E^{\circ} /$ least positive
can only score $M 2$ if $M 1$ correct
do not allow e.m.f instead of E°
(most) negative $E^{\circ} /$ lowest $E^{\circ} /$ least positive
can only score $M 2$ if $M 1$ correct
do not allow e.m.f instead of E°
(c) $\quad \underline{\mathrm{E}^{\circ} \mathrm{F}_{2}}\left(/ \mathrm{F}^{-}\right)>\underline{\mathrm{E}^{\circ} \mathrm{O}_{2}}\left(/ \mathrm{H}_{2} \mathrm{O}\right)$
or e.m.f is positive or e.m.f $=1.64 \mathrm{~V}$

Fluorine reacts to form oxygen (can score from equation in M3 even if equation unbalanced provided no contradiction) or fluorine oxidises water or fluorine is a more powerful oxidising agent than oxygen

$$
\begin{aligned}
2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \rightarrow 4 \mathrm{~F}^{-}+4 \mathrm{H}^{+}+\mathrm{O}_{2} \\
& \text { allow } 4 \mathrm{HF} \text { in equation } \\
& \text { balanced equation scores } M 2 \text { and } \mathrm{M} 3
\end{aligned}
$$

(d) (i) order correct $\mathrm{Zn} \mathrm{Zn}^{2+} \mathrm{Ag}_{2} \mathrm{O}$ Ag or reverse of this order ignore ss, H^{+}and $\mathrm{H}_{2} \mathrm{O}$, no. of moles
all phase boundaries correct
allow $\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right| \mid \mathrm{Ag}_{2} \mathrm{O}, \mathrm{Ag}$
or $\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right|\left|\mathrm{Ag}_{2} \mathrm{O}\right| H^{+} \mid A g$ for M1 \& M2
e.g. $\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right|\left|\mathrm{Ag}_{2} \mathrm{O}\right| \mathrm{Ag}$ or $\mathrm{Ag}\left|\mathrm{Ag}_{2} \mathrm{O}\right|\left|\mathrm{Zn}^{2+}\right| \mathrm{Zn}$ scores 2

M2 cannot be gained unless M1 scored
allow H^{+}either side of $\mathrm{Ag}_{2} \mathrm{O}$ with comma or |
for M2 penalise

- wrong phase boundary (allow dashed lines for salt bridge)
- Pt
- use of + (from half equation)
- water/ H^{+}outside Ag in Ag electrode
(ii) $1.1(\mathrm{~V})$

Allow no units, penalise wrong units
allow correct answer even if no answer to (d)(i) or answer to (d)(i) incorrect
allow -1.1 if silver electrode on Left in (d)(i) even if the species are in the wrong order.
(iii) Reaction(s) not reversible or $\mathrm{H}_{2} \mathrm{O}$ electrolyses
do not allow hard to reverse
mention of primary cell is not enough to show that reaction(s) are irreversible

1
(e) (i) $\quad-0.46(\mathrm{~V})$

Allow no units, penalise wrong units
(ii) $2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{HSO}_{4}^{-}+2 \mathrm{H}^{+}$ lead species correct on correct sides of equation equation balanced and includes $\mathrm{H}_{2} \mathrm{O}$,
HSO_{4}^{-}and $\mathrm{H}+\left(\right.$ or $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
allow ions / species must be fully cancelled out or combined allow 1/2 for balanced reverse equation
(f) (i) reagents / $\mathrm{PbO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4} /$ acid / ions used up (or concentration decreases)
(ii) fuel cell
(iii) reagents / fuel supplied continuously
concentrations (of reagents) remain constant

M4. (a) $\quad 1.4 \mathrm{~V}$
Allow + or -
(b) $2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cd} \rightarrow 2 \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Cd}(\mathrm{OH})_{2}$

Mark for species, Deduct a mark for additional species (eg OH^{-}) but allow balance mark

Balanced
If equation is reversed $C E=0$
(c) $\mathrm{NiO}(\mathrm{OH})$ or $\mathrm{Ni}(\mathrm{III})$ or nickel
+3
Allow conseq on wrong species

