M1. (a) (i) Co/Cobalt
If Co or Cobalt not given CE $=0$
ignore case in symbol for Co
(+) 4
(+) 3
Allow 4 and 3 in either order
(ii) $\mathrm{Li} \rightarrow \mathrm{Li}^{+}+\mathrm{e}^{-}$

Ignore state symbols
Allow e without -ve sign
Do not allow equilibrium sign
(iii) Platinum is a conductor
(Platinum is) unreactive/inert
Ignore mention of surface area or catalyst
Allow 2 marks if two properties given on one answer line
Apply list principle to contradictions/wrong answers
Do not allow platinum resists corrosion
(iv) Li reacts with water/forms lithium hydroxide

Allow water breaks down (or is electrolysed) on re-charge

State symbols an ',' not necessary
Allow | in place of ','NOT ',' in place of Ignore H^{+}and $\mathrm{H}_{2} \mathrm{O}$
Deduct one mark for each mistake (e.g. Pt missed twice counts as two mistakes)
Allow reverse order for whole cell

$$
\mathrm{Pt}\left|\mathrm{Cl}, \mathrm{ClO}_{3}^{-}\right|\left|\mathrm{SO}_{4^{2-}}^{2}, \mathrm{SO}_{3^{2-}}\right| \mathrm{Pt}
$$

(ii) $\mathrm{ClO}_{3}^{-}+3 \mathrm{SO}_{3}{ }^{2-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{SO}_{4}{ }^{2-}$

Oxidising agent ClO_{3}^{-}

Reducing agent $\mathrm{SO}_{3}{ }^{2-}$

M2. (a) Hydrogen $/ \mathrm{H}_{2}$ gas/bubbles
$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl} / \mathrm{H}^{+}$

At 298 K and 100 kPa
Allow 1 bar instead of 100 kPa
Do not allow 1 atm

Pt (electrode)
(b) $\mathrm{Li}^{+}+\mathrm{MnO}_{2}+\mathrm{e}^{-} \rightarrow \mathrm{LiMnO}_{2}$

Ignore state symbols
$-0.13(\mathrm{~V})$
(c) Fe^{3+} ions reduced to Fe^{2+}

Can score from equation/scheme

Because $E\left(\mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)\right)>E\left(\mathrm{H}^{+} / \mathrm{H}_{2}\right) / E($ hydrogen $)$
Allow emf/E cell $_{\text {el }}+\mathrm{ve} / 0.77 \mathrm{~V}$
Allow Fe^{3+} better oxidising agent than H^{+}

Allow H_{2} better reducing agent than Fe^{2+}

Only award this explanation mark if previous mark given
(d) Moles $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=\underline{23.7 \times 0.01 / 1000}=2.37 \times 10^{-4}$
$1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ reacts with $6 \mathrm{~mol} \mathrm{Fe}{ }^{2+}$ so moles
Fe^{2+} in $25 \mathrm{~cm}^{3}=6 \times 2.37 \times 10^{-4}=1.422 \times 10^{-3}$
$M 1 \times 6$
Moles Fe^{2+} in $250 \mathrm{~cm}^{3}=1.422 \times 10^{-2}$
M2 $\times 10$ or M4/10

Original moles $\mathrm{Fe}^{2+}=10.00 / 277.9=0.0360$
Independent mark

Moles Fe^{2+} oxidised $=0.0360-0.0142=0.0218$
M4-M3
$\%$ oxidised $=(0.0218 \times 100) / 0.0360=60.5 \%$
(M5 $\times 100$)/M4
Allow 60 to 61
Note Max 3 if mol ratio for M2 wrong
eg 1:5 gives 67.1\%
1:1 gives 93.4\%
Note also, 39.5\% (39-40) scores M1, M2, M3 and M4 (4 marks)

M3. (a) By definition
allow 'set to this value'
(b) 1.23 V

Allow + or -
(c) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{OH}-(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}(\mathrm{I})| | \mathrm{O}_{2}(\mathrm{~g})\left|\mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \mathrm{OH}^{-}(\mathrm{aq})\right| \mathrm{Pt}$ $\mathrm{H}_{2} \mathrm{O}$ not essential, allow reverse order

Correct but with Pt missing

Includes Pt with correct representation
(d) Uses $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$

And ($2 \times$) $2 \mathrm{OH}^{-}+\mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(e) Increases the surface area (so reaction faster)
(f) Overall reaction is the same $\left(2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\right)$

Or shows e.m.f. is the same
(g) Hydrogen and oxygen supplied continuously

OR
Can be operated without stopping to recharge
Or can be refuelled quickly
Allow any one mark
(h) Hydrogen may need to be made using an energy source that is not 'carbon neutral'

1

M4.(a) (Standard) hydrogen (electrode) (1)
(b) (i) To allow transfer of electrons / provide a reaction surface (1)
(ii) $298 \mathrm{~K}(1)$

Both $\mathrm{F}^{3+}(\mathrm{aq})$ and $\mathrm{Fe}^{2+}(\mathrm{aq})$ have a concentration of 1 $\mathrm{mol} \mathrm{dm}{ }^{-3}(1)$ (QoL)
$\mathrm{OR}\left[\mathrm{H}^{+}\right]=1 \mathrm{~mol} \mathrm{dm}^{-3}$
NOT zero current or 100 kPa
(c) +1.34 V (1)
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$
Correct species / order (1)
Balanced and cancelled (1)
Allow one for $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}^{2-}$
(d) (i) $\mathrm{Ce}^{4+}(\mathrm{aq})(1)$
(ii) $\mathrm{VO}_{2}{ }^{+}(\mathrm{aq})$ (1); $\mathrm{Cl}_{2}(1)$

Penalise additional answers to zero
(e) $\mathrm{Pt}\left|\mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq}) \| \mathrm{Ce}^{4+}(\mathrm{aq}), \mathrm{Ce}^{3+}(\mathrm{aq})\right| \mathrm{Pt}$ Correct species (1)
Correct order (1)
Deduct one mark for each error

