

2

(ii) $ClO_3^- + 3SO_3^{2-} \rightarrow Cl^- + 3SO_4^{2-}$

1

Oxidising agent CIO₃-

1

1

Reducing agent SO₃²⁻

[12]

M2. (a) Hydrogen/H₂ gas/bubbles

1

1.0 mol dm⁻³ HCl/H⁺

1

At 298K and 100kPa

Allow 1 bar instead of 100 kPa Do not allow 1 atm

1

Pt (electrode)

1

(b) $Li^+ + MnO_2 + e^- \rightarrow LiMnO_2$ Ignore state symbols

1

-0.13(V)

1

(c) Fe³+ ions reduced to Fe²+

Can score from equation/scheme

1

Because $E(Fe^{3+}(/Fe^{2+})) > E(H^+/H_2)/E(hydrogen)$

Allow emf/E_{cell} +ve/0.77V

Allow Fe³⁺ better oxidising agent than H⁺

Allow H₂ better reducing agent than Fe²⁺ Only award this explanation mark if previous mark given

1

(d) Moles $Cr_2O_7^{2-} = 23.7 \times 0.01/1000 = 2.37 \times 10^{-4}$

1

1 mol $Cr_2O_7^{2-}$ reacts with 6 mol Fe^{2+} so moles Fe^{2+} in 25 cm³ = 6 × 2.37 × 10⁻⁴ = 1.422 × 10⁻³

1

 $M1 \times 6$

Moles Fe^{2+} in 250 cm³ = 1.422 × 10⁻²

 $M2 \times 10 \text{ or } M4/10$

1

Original moles $Fe^{2+} = \frac{10.00/277.9}{10.00/277.9} = 0.0360$

Independent mark

1

Moles Fe^{2+} oxidised = 0.0360 - 0.0142 = 0.0218

M4 - M3

1

1

% oxidised = $(0.0218 \times 100)/0.0360 = 60.5\%$

(M5 × 100)/M4 Allow 60 to 61

Note Max 3 if mol ratio for M2 wrong

eg 1:5 gives 67.1% 1:1 gives 93.4%

Note also, 39.5% (39-40) scores M1, M2, M3 and M4 (4

marks)

[14]

M3. (a) By definition

allow 'set to this value'

1

(b) 1.23 V

Allow + or -

(c) $Pt|H_2(g)|OH^-(aq),H_2O(I)||O_2(g)|H_2O(I),OH^-(aq)|Pt$ H_2O not essential, allow reverse order

Correct but with Pt missing

1

Includes Pt with correct representation

1

(d) Uses O_2 + $2H_2O$ + $4e^- \rightarrow 4OH^-$

And $(2\times) 2OH^- + H_2 \rightarrow 2H_2O + 2e^-$

1

$$2H_2 + O_2 \rightarrow 2H_2O$$

1

(e) Increases the surface area (so reaction faster)

1

(f) Overall reaction is the same $(2H_2 + O_2 \rightarrow 2H_2O)$ Or shows e.m.f. is the same

1

(g) Hydrogen and oxygen supplied continuously

OR

Can be operated without stopping to recharge

Or can be refuelled quickly

Allow any one mark

1

(h) Hydrogen may need to be made using an energy source that is not 'carbon neutral'

[10]

1

		1
(b)	 (i) To allow transfer of electrons / provide a reaction surface (1) (ii) 298 K (1) Both F³⁺ (aq) and Fe²⁺ (aq) have a concentration of 1 mol dm⁻³ (1) (QoL) OR [H⁺] = 1 mol dm⁻³ NOT zero current or 100 kPa 	3
(c)	+1.34 V (1) 2 MnO ₄ ⁻ + 5 H ₂ SO ₃ \rightarrow 2 Mn ²⁺ + 5 SO ₄ ²⁻ + 3 H ₂ O +4 H ⁺ Correct species / order (1) Balanced and cancelled (1) Allow one for 2 MnO ₄ ⁻ + 5 H ₂ SO ₃ \rightarrow 2 Mn ²⁺ + 5 SO ₄ ²⁻	3
(d)	(i) Ce ⁴⁺ (aq) (1) (ii) VO ₂ ⁺ (aq) (1); Cl ₂ (1) Penalise additional answers to zero	3
(e)	Pt Fe ²⁺ (aq), Fe ³⁺ (aq) Ce ⁴⁺ (aq), Ce ³⁺ (aq) Pt Correct species (1) Correct order (1) Deduct one mark for each error	2

M4.(a) (Standard) hydrogen (electrode) **(1)**

[12]