M1.(a) $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$

If equations reversed, allow M1 only.

1

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
Ignore state symbols.

1

(b) Moles of copper(II) reacted = $(100 / 1000) \times 0.5 = 0.05$

1

Moles of zinc reacted = 0.05

1

Mass of zinc lost =
$$0.05 \times 65.4 = 3.27 \text{ g}$$

Correct final answer without working scores *M3* only.

1

(c) Allow cell to discharge until [Cu²+] is 0.5

Alternative: Allow cell to discharge completely.

1

Confirmed by colorimetric measurement or other suitable method Solution colourless or use of chemical test to determine absence of copper(II)

1

1

Weigh the Zn electrode before and after the experiment

Weigh Zn electrodes before and after and halve the mass change.

[8]

M2 .(a) I	t has mobile ions / ions can move through it / free ions Do not allow movement of electrons. Allow specific ions provided they are moving but do not react.	1
(b)	<u>Chloride</u> ions react with <u>copper ions</u> / <u>Cu²⁺</u> OR [CuCl ₄] ²⁻ formed If incorrect chemistry, mark = 0	1
(c)	The Cu²⁺ ions / CuSO₄ in the <u>left-hand</u> electrode more concentrated Allow converse.	1
	So the reaction of Cu²⁺ with 2e⁻ will occur (in preference at) left-hand electrode / Cu → Cu²⁺ + electrons at right-hand electrode Allow left-hand electrode positive / right-hand electrode negative. Also reduction at left-hand electrode / oxidation at right-hand electrode. Also left-hand electrode has oxidising agent / right-hand electrode has reducing agent. Allow E left-hand side > E right-hand side	1
(d)	(Eventually) the copper ions / CuSO₄ in each electrode will be at the same concentration	1
(e)	(i) −3.05 (V) Must have minus sign. −3.05 only.	1
	(ii) $LiMnO_2 \rightarrow Li + MnO_2$ correct equation Allow 1 for reverse equation. Allow multiples.	

1

Correct direction

If Li^{+} not cancelled but otherwise correct, max = 1If electrons not cancelled, CE = 0 $LiMnO_2 \rightarrow Li + MnO_2$ scores 2 $Li^{+} + LiMnO_2 \rightarrow Li^{+} + Li + MnO_2$ scores 1 $Li + MnO_2 \rightarrow LiMnO_2$ scores 1

1

1

(iii) Electricity for recharging the cell may come from power stations <u>burning</u> (fossil) fuel

Allow any reference to <u>burning</u> (of carbon-containing) fuels. Note combustion = burning.

[9]

M3.(a) Electron acceptor / gains electrons / takes electrons away

Do not allow electron pair acceptor / gain of electrons / definition of redox (QWC)

1

(b) $Cd(OH)_2$

Do not allow 'Cd(OH)2/Cd'

1

Species (on LHS) with the least positive/most negative electrode potential / lowest *E* / smallest *E*

Only allow this mark if M1 answer given correctly or blank Do not allow negative emf

1

(c) (i) 1.5 (V) / 1.50

1

	(ii)	2MnO₂ + 2H₂O + Zn →2MnO(OH) + 2OH⁻ + Zn²⁺ Ignore state symbols e⁻ must be cancelled (take care that Zn²⁺ is on RHS)	1
	(iii)	Allows <u>ions</u> to pass (through it) or words to that effect Penalise passage of electrons Allow mention of particular ions	1
	(iv)	Allows electrons to flow / makes electrical contact / conductor Allow acts as an (inert) electrode / anode / cathode	1
	(v)	Zn is 'used up' / has reacted / oxidised Allow idea that zinc <u>reacts</u> Do not allow just zinc corrodes	1
(d)	(i)	3 / +3 / III	1
		2Ni(OH)₂ + Cd(OH)₂ → 2NiO(OH) + Cd + 2H₂O For correct nickel and cadmium species in correct order (allow H₂O missing and OH⁻ not cancelled)	1
		For balanced equation (also scores M2) Allow max 1 for M2 and M3 if correct balanced equation but reversed. Ignore state symbols	1
	(ii)	Metal / metal compounds are re-used / supplies are not depleted / It	(the cell)

Allow does not leak / no landfill problems / less mining / less energy to extract metals / less waste

can be re-used

Do not allow less CO ₂	unless	explained
-----------------------------------	--------	-----------

1

(e) (i) $C_2H_6OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ Allow C_2H_6O

1

(ii) $C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$ Allow C_2H_6O

1

(iii) (+)0.23 (V)

1

(iv) <u>CO</u>₂ released by combustion / fermentation / fuel cell / reaction with water Can be answered with the aid of equations

1

1

(atmospheric) CO₂ taken up in photosynthesis

[17]

M4.(a) To remove the <u>oxide</u> layer on the aluminium

Do not allow 'cleaning' or 'removal of grease'.

Do not allow 'removal of impurities' without qualification.

1

(b) An appropriate method for delivering H₂ gas over a Pt electrode

Need H₂ gas and Pt electrode labelled (allow gas delivered directly below the electrode).

1

		The Pt electrode must clearly be in contact with a solution of a named acid. Ignore any concentration or pressure values. Ignore absence of bubbles. Allow if electrode is below outer acid level.	1	
	(c)	The carbonate ion reacts with the acid (in the SHE) / reaction between carbonate and Al³* Lose this mark if aluminium carbonate formed but mark on.	1	
		Reaction given (either equation or products specified) OR H ⁺ / Al ³⁺ concentrations change / cell e.m.f. altered	1	[5]
M5 .(a) D	Diagram of an Fe³+ / Fe²+ electrode that includes the following parts labelled: Solution containing Fe²+ and Fe³+ ions	1	
		Platinum electrode connected to one terminal of a voltmeter Must be in the solution of iron ions (one type will suffice)	1	
		Salt bridge Do not allow incorrect material for salt bridge and salt bridge must be in the solution (ie it must be shown crossing a meniscus)	1	
		298 K and 100 kPa / 1 bar	1	
		all solutions unit / 1 mol dm ⁻³ concentration Allow zero current / high resistance voltmeter as alternative		

to M4 or M5 Ignore hydrogen electrode even if incorrect

1

(b) $Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}$ *Ignore state symbols*

1

Fe|Fe²⁺||Cu²⁺|Cu correct order Allow Cu|Cu²⁺||Fe²⁺|Fe

1

Phase boundaries and salt bridge correct, no Pt

Allow single / double dashed line for salt bridge

Penalise phase boundary at either electrode end

Can only score M3 if M2 correct

1

Copper electrode

Allow any reference to copper

1

(c) $E^{\circ} \text{Au}^{+}(/\text{Au}) > E^{\circ} \text{O}_{2} (/\text{H}_{2}\text{O})$ Allow E cell / e.m.f. = 0.45 V Allow 1.68 > 1.23

1

So Au⁺ ions will oxidise water / water reduces Au⁺ *QoL*

1

$$2Au^{+} + H_2O \rightarrow 2Au + \frac{1}{2}O_2 + 2H^{+}$$
Allow multiples

1

(d) $E^{\Theta} Ag^{+}(/Ag) > E^{\Theta} Fe^{2+}(/Fe)$

Allow E cell / e.m.f. = 1.24Allow 0.80 > -0.44

1

And E° Ag⁺(/ Ag) > E° Fe³⁺(/ Fe²⁺) Allow E cell / e.m.f. = 0.03 Allow 0.80 > 0.77

1

So silver ions will oxidise iron (to iron(II) ions) and then oxidise Fe(II) ions (further to Fe(III) ions producing silver metal)

Allow Ag⁺ ions will oxidise iron to iron(III)

[15]