M1.		(a) Hydrogen/H ₂ gas/bubbles	1
		1.0 mol dm₃ HCl/H⁺	1
		At 298K and 100kPa Allow 1 bar instead of 100 kPa Do not allow 1 atm	1
		Pt (electrode)	1
	(b)	$Li^{+} + MnO_2 + e^{-} \rightarrow LiMnO_2$ Ignore state symbols	1
		–0.13(V)	1
	(c)	Fe ³⁺ ions reduced to Fe ²⁺ Can score from equation/scheme	1
		Because E(Fe ^{s*} (/Fe ^{s*})) > E(H [*] /H ₂)/E(hydrogen) Allow emf/E _{cell} +ve/0.77V Allow Fe ^{s*} better oxidising agent than H [*] Allow H ₂ better reducing agent than Fe ^{2*} Only award this explanation mark if previous mark given	1
	(d)	Moles $Cr_2O_7^{2-} = 23.7 \times 0.01/1000 = 2.37 \times 10^{-4}$	1
		1 mol $Cr_2O_7^{2-}$ reacts with 6 mol Fe ²⁺ so moles Fe ²⁺ in 25 cm ³ = 6 × 2.37 × 10 ⁻⁴ = 1.422 × 10 ⁻³	1
		M1 × 6	1
		Moles Fe ²⁺ in 250 cm ³ = 1.422 × 10 ⁻² M2 × 10 or M4/10	1
		Original moles Fe² = <u>10.00/277.9</u> = 0.0360	

Independent mark	1
Moles Fe²⁺ oxidised = 0.0360 – 0.0142 = 0.0218 <i>M</i> 4 – <i>M</i> 3	1
% oxidised = (0.0218 × 100)/0.0360 = 60.5% (M5 × 100)/M4 Allow 60 to 61 Note Max 3 if mol ratio for M2 wrong eg 1:5 gives 67.1% 1:1 gives 93.4% Note also, 39.5% (39-40) scores M1, M2, M3 and M4 (4 marks)	

[14]

1

1

1

1

1

M2.D

M3. (a) 1.4 V *Allow* + *or* –

> (b) $2NiO(OH) + 2H_2O + Cd \rightarrow 2Ni(OH)_2 + Cd(OH)_2$ Mark for species, Deduct a mark for additional species (eg OH) but allow balance mark

Balanced

If equation is reversed CE=0

(c) NiO(OH) or Ni(III) or nickel

+3

[1]

M4.		(a)	(i) HgO	1
		(ii)	$Hg^{_{2^{+}}} + 2e^{-} \rightarrow Hg$	1
		(iii)	$2H_2O + SO_2 \rightarrow H_2SO_4 + 2e^-$ etc	1
		(iv)	$Cl_2 + 2e^- \rightarrow 2Cl^-$	1
				1
	(b)	(i)	Vanadium species: VO₂⁺	1
			Oxidation state: 5	1
			Half-equation: $V^{2*} + 2H_2O \rightarrow VO_2^* + 4H^* + 3e^-$	1
		(ii)	Cell e.m.f 0.06 V	1
			Change in e.m.f , Increases	1
			More Fe ³⁺ ions to accept electrons	1
			Fe ³⁺ /Fe ²⁺ electrode becomes more positive	1
	(c)	(i)	$2H_2 \rightarrow 4H^+ + 4e^-$	1
			$4e^- + O_2 + 2H_2O \rightarrow 4OH^-$	

[5]

1

1

	(ii)	Unchanged	1
(d)	Econ	omic disadvantage; Use of CH₄ or cost of producing or high temp	1
	Envir	ronmental disadvantage; Makes CO₂	1

(e) Cost of manufacture of solar cells

0.60 V

M5.

(a) (i)

1

[17]

(ii)
$$H_2O + H_2SO_3 \rightarrow SO_4^2 + 4H^+ + 2e^-$$

(i) $2IO_3^- + 2H^+ 5H_2O_2 \rightarrow 5O_2 + I_2 + 6H_2O$ Species
Balanced
(ii) The concentration of the ions change or are no longer standard or
the e.m.f is determined when no current flows
(iii) Unchanged
(iv) Increased
1

E	Equilibrium IO_3^-/I_2 displaced to the right	1	
E	Electrons more readily accepted or more reduction occurs or electrode becomes more positive (Q o L)	1	
(c) ^{VO} ₂ ⁺		1	
5 or V $V^{2+} + 2H_2O \rightarrow VC$) ₂ + 4H⁺ 3e⁻	1	[12]

M6.	(a)	(i)	Fe ²⁺	1
	(ii)	F₂O		1
	(iii)	Fe²⁺		1
		Cl⁻		1
			Use list principle if more than two answers	

(b)	(i)	e.m.f. = $E(rhs) - E(lhs)$	1	ł
		= 1.52 – 0.77 = 0.75 (0.75 scores first mark also)	1	1
	(ii)	$Fe^{2*} \rightarrow Fe^{3*} + e^{-}$	1	1

(iii) Decrease

(Increase is CE, no further marks)	1	
Equilibrium (or reaction) shifts to R		
(or L if refers to half equation in table) (or in favour of more Fe ³⁺) (or more Fe ³⁺ formed) (or more electrons formed)	1	
Electrode potential (for Fe³+/Fe²+) less positive (ordecreases)	1	[10]