$Ca(s)+ 2H_2O(I) \longrightarrow Ca^{2+}(aq) + 2OH^{-}(aq) + H_2(g)$ (b) State symbols essential 1 (C) Oxidising agent 1 Ca(g) ──> Ca⁺(g) + e⁻ (d) State symbols essential Allow 'e' without the negative sign 1 (e) Decrease If answer to 'trend' is not 'decrease', then chemical error = 0 / 3 1 lons get bigger / more (energy) shells Allow atoms instead of ions 1 Weaker attraction of ion to lost electron 1

Allow correct numbers that are not superscripted

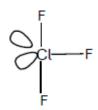
M2.(a) Silicon / Si

M1.(a)

1s²2s²2p⁶3s²3p⁶4s²

If not silicon then CE = 0/3

1


[7]

	<u>covalent</u> (bonds) <i>M3 dependent on correct M2</i>	1
	Strong or many of the (covalent) bonds need to be <u>broken</u> / needs a lot of energy to <u>break</u> the (covalent) bonds <i>Ignore hard to break</i>	1
(b)	Argon / Ar	
	If not argon then CE = 0 / 3. But if Kr chosen, lose M1 and allow M2+M3	1
	Large(st) number of protons / large(st) nuclear charge Ignore smallest atomic radius	1
	Same amount of shielding / same number of shells / same number of energy levels	
	Allow similar shielding	1

(c) Chlorine / Cl

Not Cl₂, Not CL, Not Cl²

(d) (i)

1

1

1

Or any structure with 3 bonds and 2 lone pairs Ignore any angles shown

Cl Cl

Or a structure with 2 bonds and 1 lone pair

(ii) Bent / v shape

Ignore non-linear, angular and triangular

(iii)
$$\frac{1}{2}_{Cl_2} + \frac{3}{2}_{F_2} \longrightarrow CIF_3$$

No multiples
Ignore state symbols

(i) 1.6734 × 10⁻²⁴ (g)

M3.(a)

[11]

1

1

1

1

W3.(a) (i)
$$1.6734 \times 10^{-24}$$
 (g)
Only.
 $1.6734 \times 10^{-27} \text{ kg}$
Not 1.67×10^{-24} (g).
(ii) **B**
(b) (i) $\frac{10x + 11y}{x + y} = 10.8$
OR ratio $10:11 = 1:4$ OR 20:80 etc
Allow idea that there are 5×0.2 divisions between 10 and

11.

1

abundance of ¹⁰B is <u>20(</u>%)

OR

$$\frac{10x}{100} + \frac{11(100-x)}{100} = 10.8$$

$$10x + 1100 - 11x = 1080$$

$$\therefore x = 1100 - 1080 = 20\%$$

Correct answer scores M1 and M2.

(ii) Same number of electrons (in outer shell or orbital) *Ignore electrons determine chemical properties.*

Same electronic configuration / arrangement Ignore protons unless wrong.

(c) Range between 3500 and 10 000 kJ mol⁻¹

(d) $B^+(g) \longrightarrow B^{2+}(g) + e^{(-)}$

 $B^{+}(g) - e^{(-)} \longrightarrow B^{2+}(g)$

$$B^{+}(g) + e^{(-)} \longrightarrow B^{2^{+}}(g) + 2e^{(-)}$$

Ignore state symbol on electron even if wrong.

(e) Electron being removed from a positive ion (therefore needs more energy) / electron being removed is closer to the nucleus

Must imply removal of an electron. Allow electron removed from a + particle / species or from a 2+ ion. Not electron removed from a higher / lower energy level / shell. Not electron removed from a higher energy sub-level / orbital. Ignore electron removed from a lower energy sub-level / orbital. Ignore 'more protons than electrons'. Not 'greater nuclear charge'. Ignore 'greater effective nuclear charge'. Ignore shielding.

[8]

1

1

1

1

M4.(a) (i) d (block) OR D (block)

Ignore transition metals / series. Do not allow any numbers in the answer.

(ii) Contains positive (metal) ions or protons or nuclei and <u>delocalised /</u> <u>mobile / free / sea of electrons</u>

Ignore atoms.

Strong attraction between them or strong metallic bonds

Allow 'needs a lot of energy to break / overcome' instead of 'strong'.

If strong attraction between incorrect particles, then CE = 0 / 2.

If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then CE=0.

(+,+)(+)

(iii)

M1 is for regular arrangement of atoms / ions (min 6 metal particles). M2 for + sign in each metal atom / ion

M2 for + sign in each metal atom / ion. Allow 2^+ sign.

OR

(iv) <u>Layers / planes / sheets of atoms or ions</u> can slide over one another *QoL*.

1

1

1

2

1

1

(b) (i) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ (4s⁰) Only.

> (ii) NiCl₂.6H₂O + **6** SOCl₂ \longrightarrow NiCl₂ + **6** SO₂ + **12** HCl Allow multiples.

NaOH / NH₃ / CaCO₃ / CaO Allow any name or formula of alkali or base. Allow water.

M5.(a) $AI + 1.5CI_2 \rightarrow AICI_3$ *Accept multiples. Also 2AI + 3CI_2 \rightarrow AI_2CI_6 Ignore state symbols.*

> (b) Coordinate / dative (covalent) If wrong CE=0/2 if covalent mark on.

> > Electron pair on Cl⁻ donated to Al(Cl₃) QoL Lone pair from Cl⁻ not just Cl Penalise wrong species.

(c) AI_2CI_6 or $AIBr_3$

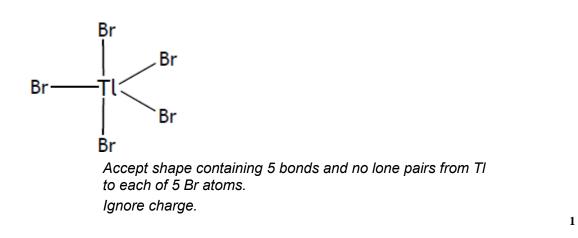
Allow Br₃Al or Cl₆Al₂ Upper and lower case letters must be as shown. Not 2AICl₃ 1

1

1

1

1


1

[9]

(d) SiCl₄ / silicon tetrachloride

Accept silicon(4) chloride or silicon(IV) chloride. Upper and lower case letters must be as shown. Not silicon chloride.

(e)

Trigonal bipyramid(al)

1

1

1

1

1

(f) (i) CI — TI — CI

Accept this linear structure only with no lone pair on TI

(ii) (Two) bonds (pairs of electrons) repel equally / (electrons in) the bonds repel to be as far apart as possible
 Dependent on linear structure in (f)(i).
 Do not allow electrons / electron pairs repel alone.

(g) Second

M6.A

M7.(a) **Y**

[10]

[1]

(b) **X**

(c)	Jump in trend of ionisation energies after removal of fifth electron	
	Fits with an element with 5 outer electrons (4s ² 3d ³) like V	1
(d)	Explanation: Two different colours of solution are observed	1
	Because each colour is due to vanadium in a different oxidation state	1
(e)	Stage 1: mole calculations in either order	
	Moles of vanadium = 50.0 × 0.800 / 1000 = 4.00 × 10 ⁻² Extended response Maximum of 5 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.	1
	Moles of SO ₂ = pV / RT = (98 000 × 506 × 10 ⁻⁶) / (8.31 × 293)	
	= 2.04 × 10 ⁻²	1
	Stage 2: moles of electrons added to NH ₄ VO ₃	
	When SO_2 (sulfur(IV) oxide) acts as a reducing agent, it is oxidised to sulfate(VI) ions so this is a two electron change	1
	Moles of electrons released when SO ₂ is oxidised = $2.04 \times 10^{-2} \times 2$	

1

1

= 4.08 × 10⁻²

Stage 3: conclusion

But in NH_4VO_3 vanadium is in oxidation state 5

 4.00×10^{-2} mol vanadium has gained 4.08×10^{-2} mol of electrons therefore 1 mol vanadium has gained $4.08 \times 10^{-2} / 4.00 \times 10 - 2 = 1$ mol of electrons to the nearest integer, so new oxidation state is 5 - 1 = 4

[11]

1