(ii) 1s² 2s² 2p⁶ 3s¹ *Allow any order*

1

1

1

1

1

(iii) $AI^{+}(g) + e^{(-)} \longrightarrow AI^{2}+(g) + 2e^{(-)}$

 $\begin{array}{l} \textbf{OR} \\ Al^{*}(g) & \longrightarrow & Al^{2*}(g) + e^{(-)} \\ \\ \textbf{OR} \\ Al^{*}(g) - e^{(-)} & \longrightarrow & Al^{2*}(g) \end{array}$

- (iv) <u>Electron</u> in Si (removed from) (3)p orbital / electron (removed) from higher energy orbital or sub-shell / electron in silicon is more shielded Accept converse arguments relating to Al Penalise incorrect p-orbital
- (b) Sodium / Na *Allow Na*⁺

<u>Electron</u> (removed) from the 2nd shell / 2p (orbital) *M2 is dependent on M1 Allow electron from <u>shell</u> nearer the nucleus (so more attraction)*

1

1

(c) Silicon / Si

Not SI

(d) Heat or energy needed to overcome the attraction between the (negative)

electron and the (positive) nucleus or protons Not breaking bonds QoL

Or words to that effect eg electron promoted to higher energy level (infinity) so energy must be supplied

[8]

1

M2. (a) 37

These answers only. Allow answers in words.

48

Ignore any sum(s) shown to work out the answers.

 (b) (i) Electron gun / high speed/high energy electrons Not just electrons.
 Not highly charged electrons.

1

1

1

1

Knock out electron(s) Remove an electron.

(ii) $Rb(g) \rightarrow Rb^{+}(g) + e^{(-)}$ *OR* $Rb(g) + e^{(-)} \rightarrow Rb^{+}(g) + 2e^{(-)}$ *OR* $Rb(g) - e^{(-)} \rightarrow Rb^{+}(g)$ *Ignore state symbols for electron.*

1

(c) Rb is a bigger (atom) / e further from nucleus / electron lost from a higher energy level/ <u>More</u> shielding in Rb / <u>less</u> attraction of nucleus in Rb for outer electron / <u>more</u> shells Answer should refer to Rb not Rb molecule If converse stated it must be obvious it refers to Na Answer should be comparative.

1

1

1

1 1

1

1 1

1

1

1

- (d) (i) s / block s / group s Only
 - (ii) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹
 Allow 3d¹⁰ before 4s²
 Allow in any order.

(e) $(85 \times 2.5) + 87 \times 1$ 3.5 M1 is for top line

> = <u>85.6</u> Only

OR

(<u>58 × 5) + 87 ×2</u> 7 M1[™]Rb 71.4% and [™]Rb 28.6% M2 divide by 100

<u>85.6</u>

M3 = <u>85.6</u>

(f) Detector

Mark independently Allow detection (plate).

Current / digital pulses / electrical signal related to abundance Not electrical <u>charge</u>. (g) Smaller

Chemical error if not smaller, CE = 0/3 If blank mark on. 1 Bigger nuclear charge / more protons in Sr Not bigger nucleus. 1 Similar/same shielding QWC (Outer) <u>electron</u> entering same shell/sub shell/orbital/same number of shells. Do not allow incorrect orbital.

[16]

1

1

1

M3.(a) N³⁻ / N⁻³

- (b) F-/ fluoride Ignore fluorine/F Penalise Fl
- (c) Li₃N / NLi₃
- 81.1 18.9
- (d) 40.1 14
 - M1 for correct fractions

(=2.02	= 1.35)				
1.5	1	or	3:2		
	M2 for correct ratio				

 $Ca_{\scriptscriptstyle 3}N_{\scriptscriptstyle 2}$

If Ca_3N_2 shown and with no working award 3 marks If Ca_3N_2 obtained by using atomic numbers then lose M1 1

1

1

1

2

1

[7]

 $\begin{array}{ll} (e) & 3 \; Si + 2 \; N_{\scriptscriptstyle 2} \rightarrow Si_{\scriptscriptstyle 3}N_{\scriptscriptstyle 4} \\ & \mbox{ Accept multiples } \end{array}$

M4. (a) Cross between the Na cross and the Mg cross

- $\begin{array}{l} \mathsf{Al}(g) \to \mathsf{Al}^{\scriptscriptstyle +}(g) + e \\ \mathsf{Al}(g) e \to \mathsf{Al}^{\scriptscriptstyle +}(g) \\ \mathsf{Al}(g) + e \to \mathsf{Al}^{\scriptscriptstyle +}(g) + 2e \\ & One \ \textit{mark for state symbols consequential on getting} \\ equation \ \textit{correct.} \\ & Electron \ \textit{does not have to have the} sign \ \textit{on it} \\ & Ignore \ (g) \ \textit{if put as state symbol with } e^{-} \ \textit{but penalise state} \\ & symbol \ \textit{mark if other state symbols on } e^{-} \end{array}$
- (c) 2nd/second/2/II Only

(b)

(d) Paired electrons <u>in (3)p orbital</u> Penalise wrong number

	repel	1	
(e)	Neon/Ne No consequential marking from wrong element	1	
	Allow capital s and p Allow subscript numbers	1	
(f)	Decreases CE if wrong	1	
	Atomic radius increases/electron removed further from nucleus or nuclear charge/electron in higher energy level/Atoms get larger/more shells <i>Accept more repulsion between more electrons for M2</i> <i>Mark is for distance from nucleus</i> <i>Must be comparative answers from M2 and M3</i> <i>CE M2 and M3 if mention molecules</i>		
	Not more sub-shells As group is descended more shielding	1	
		I	[11]

1

1

M5.

(a) $Li(g) \rightarrow Li^{+}(g) + e^{-}(g)$

 $Li(g) \text{ - } e^{\cdot}(g) \rightarrow Li^{\cdot}(g)$

 $Li(g) + e(g) \rightarrow Li(g) + 2e^{-g}$ One mark for balanced equation with state symbols Charge and state on electron need not be shown

(b)	Increases If trend wrong then CE = 0/3 for (b). If blank mark on.	1	
	Increasing nuclear charge / increasing no of protons Ignore effective with regard to nuclear charge	1	
	Same or similar shielding / same no of shells / electron (taken) from same (sub)shell / electron closer to the nucleus / smaller atomic radius	1	
(c)	Lower		
	If not lower then $CE = 0/3$	1	
	Paired electrons in a (4) <u>p</u> orbital If incorrect p orbital then M2 = 0	1	
	(Paired electrons) repel If shared pair of electrons M2 + M3 = 0	1	
(d)	Kr is a bigger atom / has more shells / more shielding in Kr / electron removed further from nucleus/ electron removed from a higher (principal or main) energy level <i>CE if molecule mentioned</i> <i>Must be comparative answer</i> <i>QWC</i>	1	
(e)	2 / two / II	1	
(f)	Arsenic / As	1	[10]