M1.(a) (i) Higher than P
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

Allow any order
(iii) $\quad \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \longrightarrow \mathrm{Al}^{2}+(\mathrm{g})+2 \mathrm{e}^{-()}$

OR

$\mathrm{Al}^{+}(\mathrm{g}) \longrightarrow \mathrm{Al}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$
OR
$\mathrm{Al}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \longrightarrow \mathrm{Al}^{2^{+}}(\mathrm{g})$
(iv) Electron in Si (removed from) (3)p orbital / electron (removed) from higher energy orbital or sub-shell / electron in silicon is more shielded Accept converse arguments relating to Al Penalise incorrect p-orbital
(b) Sodium / Na

Allow Na^{+}

Electron (removed) from the $2^{\text {nd }}$ shell / $2 p$ (orbital)
M2 is dependent on M1
Allow electron from shell nearer the nucleus (so more attraction)
(c) Silicon / Si

Not SI
(d) Heat or energy needed to overcome the attraction between the (negative)
electron and the (positive) nucleus or protons
Not breaking bonds
QoL
Or words to that effect eg electron promoted to higher energy level (infinity) so energy must be supplied

M2. (a) 37
These answers only.
Allow answers in words.

48
Ignore any sum(s) shown to work out the answers.
(b) (i) Electron gun / high speed/high energy electrons

Not just electrons.
Not highly charged electrons.

Knock out electron(s)
Remove an electron.
(ii) $\mathrm{Rb}(\mathrm{g}) \rightarrow \mathrm{Rb}^{+}(\mathrm{g})+\mathrm{e}^{-()}$

OR
$R \mathrm{~b}(\mathrm{~g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Rb}^{+}(\mathrm{g})+2 \mathrm{e}^{(-)}$
OR
$\mathrm{Rb}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Rb}^{+}(\mathrm{g})$
Ignore state symbols for electron.
(c) Rb is a bigger (atom) / e further from nucleus / electron lost from a higher energy level/ More shielding in Rb / less attraction of nucleus in Rb for outer electron / more shells
Answer should refer to $R b$ not $R b$ molecule If converse stated it must be obvious it refers to Na Answer should be comparative.
(d) (i) $\mathrm{s} / \mathrm{block} \mathrm{s} /$ group s
Only
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}$
Allow 3d ${ }^{10}$ before $4 s^{2}$
Allow in any order.
(e) $\quad(85 \times 2.5)+87 \times 1 \quad 3.5$
M1 is for top line
$=\underline{85.6}$
Only
OR
$(58 \times 5)+87 \times 2 \quad 7$
M1 ${ }^{85} R b$ 71.4\% and ${ }^{87} R b 28.6 \%$
M2 divide by 100
85.6
$M 3=\underline{85.6}$
(f) Detector
Mark independently
Allow detection (plate).

Current / digital pulses / electrical signal related to abundance Not electrical charge.
> (g) Smaller

> Chemical error if not smaller, $C E=0 / 3$ If blank mark on.

Bigger nuclear charge / more protons in Sr Not bigger nucleus.

Similar/same shielding
QWC
(Outer) electron entering same shell/sub shell/orbital/same number of shells.
Do not allow incorrect orbital.
[16]

M3.(a) $\quad \mathrm{N}^{3} / \mathrm{N}^{-3}$
(b) F-/ fluoride

Ignore fluorine/F
Penalise FI
(c) $\mathrm{Li}_{3} \mathrm{~N} / \mathrm{NLi}_{3}$
(d) $\frac{81.1}{40.1} \quad \frac{18.9}{14}$

M1 for correct fractions
$(=2.02 \quad=1.35)$

| 1.5 | $1 \quad$ or $\quad 3: 2$ |
| :---: | :---: | :---: |
| | $M 2$ for correct ratio |

$\mathrm{Ca}_{3} \mathrm{~N}_{2}$
If $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ shown and with no working award 3 marks If $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ obtained by using atomic numbers then lose M1
(e) $3 \mathrm{Si}+2 \mathrm{~N}_{2} \rightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}$

Accept multiples
1

M4. (a) Cross between the Na cross and the Mg cross
(b) $\quad \mathrm{Al}(\mathrm{g}) \rightarrow \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}-$
$\mathrm{Al}(\mathrm{g})-\mathrm{e}-\rightarrow \mathrm{Al}^{+}(\mathrm{g})$
$\mathrm{Al}(\mathrm{g})+\mathrm{e}-\rightarrow \mathrm{Al}^{+}(\mathrm{g})+2 \mathrm{e}-$
One mark for state symbols consequential on getting equation correct.
Electron does not have to have the - sign on it Ignore (g) if put as state symbol with e-but penalise state symbol mark if other state symbols on e^{-}
(c) $2^{n / s e c o n d / 2 / I I}$

Only
(d) Paired electrons in (3)p orbital

Penalise wrong number
repel
(e) $\mathrm{Neon} / \mathrm{Ne}$

No consequential marking from wrong element
$1 s^{2} 2 s^{2} 2 p^{6} /[\mathrm{He}\} 2 s^{2} 2 p^{6}$
Allow capital s and p Allow subscript numbers
(f) Decreases

CE if wrong

Atomic radius increases/electron removed further from nucleus or nuclear charge/electron in higher energy level/Atoms get larger/more shells

Accept more repulsion between more electrons for M2
Mark is for distance from nucleus
Must be comparative answers from M2 and M3
CE M2 and M3 if mention molecules
Not more sub-shells

As group is descended more shielding

M5. (a) $\quad \mathrm{Li}(\mathrm{g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}(\mathrm{g})$

$$
\mathrm{Li}(\mathrm{~g})-\mathrm{e}(\mathrm{~g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})
$$

$\mathrm{Li}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$
One mark for balanced equation with state symbols
Charge and state on electron need not be shown
(b) Increases

If trend wrong then $C E=0 / 3$ for (b). If blank mark on.

Increasing nuclear charge / increasing no of protons
Ignore effective with regard to nuclear charge

Same or similar shielding / same no of shells / electron (taken) from same (sub)shell / electron closer to the nucleus / smaller atomic radius
(c) Lower

If not lower then $C E=0 / 3$

Paired electrons in a (4) p orbital
If incorrect p orbital then M2 $=0$
(Paired electrons) repel
If shared pair of electrons M2 + M3 $=0$
(d) Kr is a bigger atom / has more shells / more shielding in Kr / electron removed further from nucleus/ electron removed from a higher (principal or main) energy level

CE if molecule mentioned
Must be comparative answer
QWC
(e) $2 /$ two / II

1
(f) Arsenic / As

