M1. (a) $2s^22p^63s^1$

1s² can be rewritten Allow 2s²2p,²2p,²2p²3s¹ Allow subscripts and capitals

1

1

1

1

(b) (i) Energy/enthalpy (needed) to remove one mole of electrons from one mole of atoms/compounds/molecules/elements

OR

Energy to form one mole of positive ions from one mole of atoms

OR

Energy/enthalpy to remove one electron from one atom

In the gaseous state (to form 1 mol of gaseous ions) Energy given out loses M1 M2 is dependent on a reasonable attempt at M1 Energy needed for this change $X(g) \rightarrow X^{*}(g) + e^{\ominus} = 2 \text{ marks}$ This equation alone scores one mark

(ii) $Mg^{*}(g) \rightarrow Mg^{2*}(g) + e^{(-)}$ $Mg^{*}(g) + e^{(-)} \rightarrow Mg^{2*}(g) + 2e^{(-)}$ $Mg^{*}(g) - e^{(-)} \rightarrow Mg^{2*}(g)$ *Do not penalise MG Not equation with X*

 Electron being removed from a positive ion (therefore need more energy)/electron being removed is closer to the nucleus/Mg⁺ smaller (than Mg)/Mg⁺ more positive than Mg

> Allow from a + particle/species Not electron from a higher energy level/or higher sub-level More protons = 0

1

(iv) Range from 5000 to 9000 kJ mol⁻¹

1

(c) Increase

(C)	Increase	If decrease CE = 0/3 If blank mark on	1
	Bigger nuc	lear <u>charge</u> (from Na to CI)/more <u>protons</u> <i>QWC</i>	1
		aken) from same (sub)shell/similar or same shielding/ oser to the nucleus/smaller atomic radius <i>If no shielding = 0</i> <i>Smaller ionic radius = 0</i>	1
(d)	Lower		
		If not lower CE = 0/3 If blank mark on Allow does not increase	1
	Two/pair of	f electrons in (3)p orbital or implied <i>Not 2p</i>	1
	repel (each	n other) M3 dependent upon a reasonable attempt at M2	1
(e)	Boron/B o	r oxygen/O/O₂	1

[13]

1

M2.	 (a) enthalpy/energy change/required when an electron is removed/ knocked out / displaced/ to form a uni-positive ion
	(ignore 'minimum' energy)

from a <u>gaseous</u> atom (could get M2 from a correct equation here)

1

1

(b)	1s² 2	2s²2p ⁶	
		(accept capitals and subscripts)	1
(c)	's' b	lock (not a specific 's' orbital – e.g. 2s)	1
(d)	Mg⁺	$(g) \rightarrow Mg^{_{2^{+}}}(g) + e^{_{-}} or$	
	Mg⁺(g) + $e^{-} \rightarrow Mg^{2+}(g)$ + 2 e^{-} or	
	Mg⁺($g) - e^{-} \rightarrow Mg^{2+}(g)$	1
(e)	<u>Mg²</u> ∗	t ion smaller than Ne atom / Mg² e⁻ closer to nucleus (<i>Not <u>'atomic'</u> radius fo Mg²</i>) has more protons than Ne / higher nuclear charge or removed from a charged Mg²ion / neutral neon atom	1
	<u> </u>	(accept converse arguments) (If used 'It' or Mg/magnesium/Mg³ etc. & <u>2</u> correct reasons, allow (1))	1
(f)	(i)	trend: increases (<i>if 'decreases', CE = 0/3</i>) Expl ⁿ : more protons / increased proton number /	1
		increased nuclear charge (NOT increased atomic number)	
		oomo obell (como obioldina: (caraller cina	1
		same shell / same shielding / smaller size	1
	(ii)	QoL reference to the e- pair in the 3p sub-level	

(penalise if wrong shell, e.g. '2p', quoted)

repulsion between the e-in this e-pair
(if not stated, 'e⁻ pair' must be clearly implied)
(mark M4 and M5 separately)

1

[12]

M3.A

[1]

M4.	(a)	$2AI + 3CuCI_2 \rightarrow 2AICI_3 + 3Cu;$
		(accept multiples/fractions)

OR

	T

(b)	(i)	increases;	1
	(ii)	lower than expected / lower than Mg /	1
		less energy needed to ionise; e- removed from (3)p sub-level;	1
		('e⁻ <i>removed' may be implied)</i> of higher energy / further away from nucleus / shielded by <u>3s</u> e⁻s;	
			1

(c) $AI^{*}(g) \rightarrow AI^{2*}(g) + e^{-};$

1

(d) trend: increases;

		ator	re protons / higher charge on cation / more delocalised e- / smaller nic/ionic radius; nger attraction between (cat)ions and delocalised/free/mobile e-	1	
		OR			
		stro	nger metallic bonding;	1	[9]
M5.C)				[1]
M6.		(a)	2s² 2p°; If ignored the 1s² given and written 1s²2s²2p° mark as correct Allow capitals and subscripts	1	
	(b)	(i)	$\begin{split} Na^*(g) &\to Na^{2*}\left(g\right) + e^{(\cdot)};\\ & \text{One mark for equation and one mark for state symbols}\\ Na^*(g) + e^{(\cdot)} &\to Na^{2*}\left(g\right) + 2e^{(\cdot)};\\ & \text{M2 dependent on } M1\\ & \text{Allow } Na^*(g) - e^{(\cdot)} &\to Na(g)\\ & \text{Allow } X^*(g) \to X^{2*}\left(g\right) + e = 1 \text{ mark} \end{split}$	2	
		(ii)	Na ⁽²⁺⁾ requires loss of e ⁻ from a 2(p) orbital or 2 nd energy level or 2 nd shell <u>and</u> Mg ⁽²⁺⁾ requires loss of e ⁻ from a 3(s) orbital or 3 nd energy level or 3 nd shell / Na ⁽²⁺⁾ loses e from a lower (energy) orbital/ or vice versa; <i>Not from 3p</i> Less shielding (in Na);	1	
			Or vice versa for Mg	1	

	e [⇔] closer to nucleus/ more attraction (of electron to nucleus) (in Na); <i>M3 needs to be comparative</i>	1
	(iii) Aluminium /Al;	1
(c)	Decreases; If not decreases CE = 0 If blank, mark on Increasing nuclear charge/ increasing number of protons;	1
	Electrons in same shell or level/ same shielding/ similar shielding;	1
(d)	 Answer refers to Na; <i>Allow converse answers relating to Mg.</i> Na few<u>er protons/smaller nuclear charge/ fewer delocalised electrons;</u> <i>Allow Mg is 2+ and Na is +.</i> <i>If vdw CE = 0.</i> Na is a bigg<u>er ion/ atom;</u> Small<u>er attraction between nucleus and delocalised electrons;</u> <i>If mentioned that charge density of Mg</i>²⁺ <i>is great<u>er</u> then allow first 2 marks.</i> <i>(ie charge / size / attraction).</i> <i>M3 allow weak<u>er</u> metallic bonding.</i> 	1 1
(e)	(Bent) shape showing 2 lone pairs + 2N-H bond pairs; Atoms must be labelled. Lone pairs can be with or without lobes. Bent / v shape/ triangular; Not tetrahedral. Allow non-linear. Bent-linear = contradiction.	1

(f) Ne has full sub-levels/ can't get any more electrons in the sub-levels/ Ne has full shells;

Not 2s²2p⁶ alone. Not stable electron configuration.

[16]

1