M1. (a) $2 s^{2} 2 p^{6} 3 s^{1}$
$1 s^{2}$ can be rewritten
Allow $2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{2} 3 s^{1}$
Allow subscripts and capitals
(b) (i) Energy/enthalpy (needed) to remove one mole of electrons from one mole of atoms/compounds/molecules/elements

OR

Energy to form one mole of positive ions from one mole of atoms
OR
Energy/enthalpy to remove one electron from one atom
In the gaseous state (to form 1 mol of gaseous ions)
Energy given out loses M1
M2 is dependent on a reasonable attempt at M1
Energy needed for this change
$X(g) \rightarrow X^{+}(g)+e^{-\lambda}=2$ marks
This equation alone scores one mark
(ii) $\quad \mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}{ }^{-}$
$\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)}$
$\mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{-(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})$
Do not penalise MG
Not equation with X
(iii) Electron being removed from a positive ion (therefore need more energy)/electron being removed is closer to the nucleus $/ \mathrm{Mg}^{+}$ smaller (than Mg)/ Mg^{+}more positive than Mg

Allow from a + particle/species
Not electron from a higher energy level/or higher sub-level
More protons $=0$
(iv) Range from 5000 to $9000 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) Increase

If decrease $C E=0 / 3$
If blank mark on

Bigger nuclear charge (from Na to Cl)/more protons
QWC
electron (taken) from same (sub)shell/similar or same shielding/ electron closer to the nucleus/smaller atomic radius

If no shielding $=0$
Smaller ionic radius $=0$
(d) Lower

If not lower $C E=0 / 3$
If blank mark on
Allow does not increase

Two/pair of electrons in (3)p orbital or implied
Not $2 p$
repel (each other)
M3 dependent upon a reasonable attempt at M2
(e) Boron/B or oxygen/O/O2

M2. (a) enthalpy/energy change/required when an electron is removed/ knocked out / displaced/ to form a uni-positive ion
(ignore 'minimum' energy)
(accept 'Enthalpy/energy change for the process...' followed by an appropriate equation, for both marks) (accept molar definitions)
(b) $1 s^{2} 2 s^{2} 2 p^{6}$
(accept capitals and subscripts)
(c) 's’ block
(not a specific 's' orbital - e.g. 2s)
(d) $\quad \mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}$or
$\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}$or
$\mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})$
(e) $\quad \mathrm{Mg}^{2+}$ ion smaller than Ne atom $/ \mathrm{Mg}^{2+} \mathrm{e}^{-}$closer to nucleus
(Not 'atomic' radius fo Mg^{2+})
Mg^{2+} has more protons than $\mathrm{Ne} /$ higher nuclear charge or $\underline{\mathrm{e}}^{-}$is removed from a charged Mg^{2+i} ion / neutral neon atom (accept converse arguments)
(If used 'It' or Mg/magnesium/Mg ${ }^{3+}$ etc. \& $\underline{2}$ correct reasons, allow (1))
(f) (i) trend: increases
(if 'decreases', $C E=0 / 3$)

Expl: more protons / increased proton number / increased nuclear charge
(NOT increased atomic number)
same shell / same shielding / smaller size
(ii) QoL reference to the e- pair in the $3 p$ sub-level
(penalise if wrong shell, e.g. ' $2 p$ ', quoted)

> repulsion between the e-in this e-pair (if not stated, 'e- pair' must be clearly implied) (mark M4 and M5 separately)

M3.A

M4. (a) $2 \mathrm{AI}+3 \mathrm{CuCl}_{2} \rightarrow 2 \mathrm{AICl}_{3}+3 \mathrm{Cu}$; (accept multiples/fractions)

OR
$2 \mathrm{Al}+3 \mathrm{Cu}^{2+} \rightarrow 2 \mathrm{Al}^{\mathrm{l}^{+}}+3 \mathrm{Cu} ;$
(b) (i) increases;
(ii) lower than expected / lower than Mg /
less energy needed to ionise; e-removed from (3)p sub-level;
('e- removed' may be implied)
of higher energy / further away from nucleus / shielded by $\underline{3 \mathrm{~s}} \mathrm{e}-\mathrm{s}$;
(c) $\quad \mathrm{Al}^{+}(\mathrm{g}) \rightarrow \mathrm{Al}^{2+}(\mathrm{g})+\mathrm{e}^{-}$;
(d) trend: increases;
more protons / higher charge on cation / more delocalised e- / smaller atomic/ionic radius;
stronger attraction between (cat)ions and delocalised/free/mobile e^{-}

OR
stronger metallic bonding;
1
[9]

M5.D

M6. (a) $2 s^{2} 2 p^{6}$;
If ignored the $1 s^{2}$ given and written $1 s^{2} 2 s^{2} 2 p^{6}$ mark as correct Allow capitals and subscripts
(b) (i) $\quad \mathrm{Na}^{+}(\mathrm{g}) \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+\mathrm{e}^{-}$;

One mark for equation and one mark for state symbols
$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)} ;$
M2 dependent on M1
Allow $\mathrm{Na}^{+}(g)-\mathrm{e}^{(-)} \rightarrow \mathrm{Na}(\mathrm{g})$
Allow $X^{+}(g) \rightarrow X^{2+}(g)+e=1$ mark
(ii) $\mathrm{Na}^{(2+1}$ requires loss of e^{-}from a 2(p) orbital or $2^{\text {nd }}$ energy level or $2^{\text {nd }}$ shell and $\mathrm{Mg}^{(2+)}$ requires loss of e^{-}from a 3(s) orbital or $3^{\text {rd }}$ energy level or $3^{\text {rd }}$ shell / $\mathrm{Na}^{(2+)}$ loses e from a lower (energy) orbital/ or vice versa;

Not from 3p

Less shielding (in Na);
Or vice versa for Mg
$\mathrm{e}^{(-)}$closer to nucleus/ more attraction (of electron to nucleus) (in Na); M3 needs to be comparative
(iii) Aluminium /Al;
(c) Decreases;

If not decreases $C E=0$
If blank, mark on

Increasing nuclear charge/ increasing number of protons;

Electrons in same shell or level/ same shielding/ similar shielding;
(d) Answer refers to Na ;

Allow converse answers relating to Mg .
Na fewer protons/smaller nuclear charge/ fewer delocalised electrons;
Allow Mg is $2+$ and Na is + .
If $v d w C E=0$.

Na is a bigger ion/ atom;
1
Smaller attraction between nucleus and delocalised electrons;
If mentioned that charge density of Mg^{2+} is greater then allow first 2 marks.
(ie charge / size / attraction).
M3 allow weaker metallic bonding.
(e) (Bent) shape showing 2 lone pairs $+2 \mathrm{~N}-\mathrm{H}$ bond pairs;

Atoms must be labelled.
Lone pairs can be with or without lobes.

Bent / v shape/ triangular;
Not tetrahedral.
Allow non-linear.
Bent-linear = contradiction.
(f) Ne has full sub-levels/ can't get any more electrons in the sub-levels/ Ne has full shells;

Not $2 s^{2} 2 p^{6}$ alone.
Not stable electron configuration.

