M1.(a) Electrophilic substitution
Both words needed Ignore minor misspellings
(b) (i) $\mathrm{Sn} / \mathrm{HCl}$

OR $\mathrm{H}_{2}$ / Ni OR $\mathrm{H}_{2}$ / Pt OR Fe / HCl OR Zn / HCl OR $\mathrm{SnCl}_{2} / \mathrm{HCl}$
Ignore conc or dil with HCl ,
Allow (dil) $\mathrm{H}_{2} \mathrm{SO}_{4}$ but not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
Not allow $\mathrm{HNO}_{3}$ or $\mathrm{H}^{+}$ Ignore NaOH after $\mathrm{Sn} / \mathrm{HCl}$ Ignore catalyst
(ii) $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

OR

(iii) making dyes
$O R$ making quaternary ammonium salts $O R \underline{\text { making (cationic) surfactants }}$
$O R \underline{\text { making }}$ hair conditioner
OR making fabric softener
$O R$ making detergents
(c)


NO Mark for name of mechanism
Allow SN1
M1 for lone pair on $N$ and arrow to $C$ or mid point of space between $N$ and $C$
M2 for arrow from bond to Br
M3 for structure of protonated secondary amine
M4 for arrow from bond to N or + on N
For M4: ignore $\mathrm{RNH}_{2}$ or $\mathrm{NH}_{3}$ removing $\mathrm{H}^{+}$but penalise $\mathrm{Br}^{-}$

## (d) lone or electron pair on N

If no mention of lone pair CE $=0$
If lone pair mentioned but not on N then lose M1 and mark on

M1
in $\mathbf{J}$ spread / delocalised into ring (or not delocalised in K ) Ignore negative inductive effect of benzene Allow interacts with $\Pi$ cloud for M2
less available (for protonation or donation in $\mathbf{J}$ )

## OR

in $\mathbf{K}$ there is a positive inductive effect / electron releasing)
more available (for protonation or donation in $\mathbf{K}$ )

M2.(a) (nucleophilic) addition-elimination
Not electrophilic addition-elimination

(b) The minimum quantity of hot water was used:

To ensure the hot solution would be saturated / crystals would form on cooling

The flask was left to cool before crystals were filtered off:
Yield lower if warm / solubility higher if warm

Air passes through the sample not just round it
Allow better drying but not water squeezed out

A little cold water was poured through the crystals:
To wash away soluble impurities
(c) Water

> Do not allow unreacted reagents

Press the sample of crystals between filter papers
Allow give the sample time to dry in air
(d) $\quad M_{\text {r }}$ product $=135.0$

Expected mass $=5.05 \times \frac{135.0}{93.0}=7.33 \mathrm{~g}$

Percentage yield $=\frac{4.82}{7.33} \times 100=65.75=65.8(\%)$

Answer must be given to this precision
(e)


OR
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}+\mathrm{NO}_{2}^{+} \quad \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NHCOCH}_{3}\right) \mathrm{NO}_{2}+\mathrm{H}^{+}$
(f) Electrophilic substitution
(g) Hydrolysis
(h) $\mathrm{Sn} / \mathrm{HCl}$

$$
\text { Ignore acid concentration; allow } \mathrm{Fe} / \mathrm{HCl}
$$

$$
\mathrm{AlCl}_{4}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}
$$



OR


- M1 arrow from within hexagon
to $C$ or to + on $C$
-     + must be on C of RCO in mechanism
-     + in intermediate not too close to C1
- gap in horseshoe must be centred approximately around C1
- M3 arrow into hexagon unless Kekule
- allow M3 arrow independent of M2 structure
- ignore base removing H for M3
- NO mark for name of mechanism

Phenylethanone ignore 1 in name, penalise other numbers
Note: this is the sixth marking point in (a)
(b)

or


+ must be on $C$
But allow $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right]^{+}$
(c) M1 about electrons
methyl group has (positive) inductive effect OR increases electron density on benzene ring OR pushes electrons OR is electron releasing

Ignore reference to delocalisation

M2 about attraction
electrophile attracted more
or benzene ring better nucleophile
Allow intermediate ion stabilised
M2 only awarded after correct or close M1

M4.(a) Hydrogen bond(ing)
Allow H bonding.
Penalise mention of any other type of bond.
(b) (i) Ammonia is a nucleophile

Allow ammonia has a lone pair.

Benzene repels nucleophiles
Allow (benzene) attracts / reacts with electrophiles. OR benzene repels electron rich species or lone pairs.
OR C-Cl bond is short / strong / weakly polar.
(ii) $\mathrm{H}_{2} / \mathrm{Ni}$ OR $\mathrm{H}_{2} / \mathrm{Pt}$ OR $\mathrm{Sn} / \mathrm{HCl}$ OR Fe / HCl

Ignore dil / conc of HCl .
Ignore the term 'catalyst'.
Allow $\mathrm{H}_{2} \mathrm{SO}_{4}$ with Sn and Fe but not conc.
Ignore NaOH following correct answer.
Not $\mathrm{NaBH}_{4}$ nor $\mathrm{LiAlH}_{4}$.
(iii) conc $\mathrm{HNO}_{3}$
conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
If either or both conc missed can score 1 for both acids.
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$
OR using two equations

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}
$$

$$
\mathrm{H}_{2} \mathrm{NO}_{3}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}^{+}
$$

Allow 1:1 equation.
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$.
(iv) Electrophilic substitution



- Ignore position or absence of Cl in M1 but must be in correct position for M2.
- M1 arrow from within hexagon to N or + on N .
- Allow $\mathrm{NO}_{2}^{+}$in mechanism.
- Bond to $\mathrm{NO}_{2}$ must be to N for structure mark M2.
- Gap in horseshoe must be centered around correct carbon (C1).
- $\quad+$ in intermediate not too close to C1 (allow on or "below" a line from C2 to C6).
- M3 arrow into hexagon unless Kekule.
- Allow M3 arrow independent of M2 structure.
- Ignore base removing H in M3.
- $\quad$ on H in intermediate loses M2 not M3.


OR $\left[\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}\right]^{+\bullet}$
NOT penalise missing brackets.
If wrong ester, no further mark.
$\rightarrow$

$+$
Must be displayed formula

(1)

Radical dot must be on O
Ignore lone pair(s) on O in addition to single electron
Allow radical with brackets as


Ignore errors in acylium ion.
(b) (i) $\mathrm{AlCl}_{3}$ or $\mathrm{FeCl}_{3}$

If wrong no further marks.


Correct equation scores 2 - contrast with (b)(iii)
Allow + on C or O in equation.
(ii) Electrophilic substitution Ignore Friedel crafts.
M1

OR

M2

-     + must be on C of RCO here
- M1 arrow from within hexagon to $C$ or to + on $C$
- Gap in horseshoe must approximately be centred around C1 and not extend towards C1 beyond C2 and C6
-     + not too close to C1
- M3 arrow into hexagon unless Kekule
- allow M3 arrow independent of M2 structure, i.e. + on H in intermediate loses M2 not M3
- ignore base removing H for M3
(iii) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{C}_{6} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$

OR


Correct equation scores 1 - contrast with (b)(i)

Not allow molecular formula for ethanoic anhydride or ethanoic acid.

