Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
this one mark can be gained in equation`
$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$

OR $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$
Allow + anywhere on $\mathrm{NO}_{2}{ }^{+}$
OR via two equations
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}^{+}$
$\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$

OR

- ignore position or absence of methyl group in M1 but
must be in correct position for M2
- M1 arrow from within hexagon to N or + on N
- Allow $\mathrm{NO}_{2}{ }^{+}$in mechanism
- Bond to NO_{2} must be to N
- horseshoe must not extend beyond C2 to C6 but can be smaller
- + not too close to C1
- M3 arrow into hexagon unless Kekule
- allow M3 arrow independent of M2 structure
- ignore base removing H in M3
- + on H in intermediate loses M2 not M3
(b) 5
(c) 2
(d) $2 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6} \rightarrow 5 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~N}_{2}+7 \mathrm{C}+7 \mathrm{CO}$ Or halved

M2 Expected ΔH° hydrogenation of $\mathrm{C}_{6} \mathrm{H}_{6}$ is $3(-120)$

$$
=-360 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Allow in words e.g. expected ΔH° hydrog is three times the ΔH° hydrog of cyclohexene

M3 Actual $\Delta \mathrm{H}^{\circ}$ hydrogenation of benzene is $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (less exothermic)
or $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ different from expected Ignore energy needed

M4 Because of delocalisation or electrons spread out or resonance
(b) No mark for name of mechanism

Conc HNO_{3}
If either or both conc missing, allow one;

Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
this one mark can be gained in equation
$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
OR
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$

OR via two equations

$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$
$\mathrm{H}_{2} \mathrm{NO}_{3}+\rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$
Allow + anywhere on $\mathrm{NO}_{2}{ }^{+}$

M1

OR

M2
M3

M2

M1 arrow from within hexagon to N or + on N
Allow NO_{2}^{+}in mechanism
horseshoe must not extend beyond C2 to C6 but can be
smaller

+ not too close to C1
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure
ignore base removing H in M3
+ on H in intermediate loses M2 not M3
(c) If intermediate compound V is wrong or not shown, max 4 for 8(c)

or chlorocyclohexane or bromocyclohexane

Reaction 3

M2 HBr

M3 Electrophilic addition
Allow M2 and M3 independent of each other

Reaction 4

M4 Ammonia if wrong do not gain M5
Allow M4 and M6 independent of each other
M5 Excess ammonia or sealed in a tube or under pressure
If CE e.g. acid conditions, lose M4 and M5
M6 Nucleophilic substitution
(d) Lone or electron pair on N

No marks if reference to "Ione pair on N" missing

Delocalised or spread into ring in U

M3.C

M4. (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ OR CH $\mathrm{CH}_{3} \mathrm{CClO}$ OR propanoyl chloride $\mathrm{OR}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$ OR propanoic anhydride penalize contradiction in formula and name e.g. propyl chloride could score in equation
AlCl_{3} or FeCl_{3} or names
could score in equation
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}$
Allow RCOCl in equation but penalise above
allow + on C or O in equation
(b)

M1 arrow from circle or within it to C or to + on C
Horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure
(c) Tollens or ammoniacal silver nitrate

penalise wrong formula

M5. (a) (i) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$ OR
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{3}+\mathrm{H}^{+}$ allow $\mathrm{C}_{2} \mathrm{H}_{5}$
penalise $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}$
allow + on C or O in equation

Phenylpropanone
OR ethylphenylketone OR phenylethylketone
Ignore 1 in formula, but penalise other numbers
AlCl_{3}
can score in equation
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}$
allow $\mathrm{C}_{2} \mathrm{H}_{5}$
allow + on C or O in equation
$\mathrm{AlCl}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}$
(ii) electrophilic substitution
can allow in (a)(i) if no contradiction
OR

M1 arrow from circle or within it to C or to + on C horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C 1
M2 penalise $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}$ (even if already penalized in (a)(i))
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure ignore base removing H in M3
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN} \mathrm{OR}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$
aldehyde must be -CHO brackets optional

2-hydroxybutanenitrile OR 2-hydroxybutanonitrile no others
(ii) nucleophilic addition

(iii) (propanone) slower $\boldsymbol{O R}$ propanal faster
inductive effects of alkyl groups
OR
C of $\mathrm{C}=\mathrm{O}$ less $\delta+$ in propanone
OR
alkyl groups in ketone hinder attack
OR
easier to attack at end of chain
if wrong, no further marks

