M1.(a)

(c) Stage 1: consider the groups joined to right hand carbon of the $\mathrm{C}=\mathrm{C}$ bond Extended response
Maximum of 5 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.

Consider the atomic number of the atoms attached M1 can be scored in stage 1 or stage 2

C has a higher atomic number than H , so $\mathrm{CH}_{2} \mathrm{OH}$ takes priority

Stage 2: consider the groups joined to LH carbon of the $\mathrm{C}=\mathrm{C}$ bond
Both groups contain C atoms, so consider atoms one bond further away

C , (H and H) from ethyl group has higher atomic number than H , (H and H) from methyl group, so ethyl takes priority

Stage 3: conclusion
The highest priority groups, ethyl and $\mathrm{CH}_{2} \mathrm{OH}$ are on same side of the $\mathrm{C}=\mathrm{C}$ bond so the isomer is Z

Allow M5 for correct ECF conclusion using either or both wrong priorities deduced in stages 1 and 2

The rest of the IUPAC name is 3-methylpent-2-en-1-ol
(d) Moles of maleic acid $=10.0 / 116.0=8.62 \times 10^{-2}$

AND mass of organic product expected $=\left(8.62 \times 10^{-2}\right) \times 98.0=8.45 \mathrm{~g}$
Or moles of organic product formed $=6.53 / 98.0=6.66 \times 10^{-2}$

$$
\begin{aligned}
\% \text { yield } & =100 \times 6.53 / 8.45 \\
\text { OR } & =100 \times\left(6.66 \times 10^{-2}\right) /\left(8.62 \times 10^{-2}\right) \\
& =77.294=77.3 \%
\end{aligned}
$$

AND statement that the student was NOT correct

M2.
(a) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{O}+\mathrm{AlCl}^{-}$
equation (1)
penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside [] penalise wrong curly arrow in the equation or lone pair on AlCl_{3} else ignore

Electrophilic substitution
NOT F/C acylation
horseshoe must not extend beyond C 2 to C 6 but can be smaller

+ not too close to C1
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure
M1 arrow from within hexagon to C or to + on C
+ must be on C of RCO
(b) Nucleophilic addition

NOT reduction

M3
M2 not allowed independent, but can allow M1 for attack of H on C+ formed

1
M1

H :

1-phenylethan(-1-)ol or (1-hydroxyethyl)benzene
(c) dehydration or elimination
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or (conc) $\mathrm{H}_{3} \mathrm{PO}_{4}$
allow dilute and $\mathrm{Al}_{2} \mathrm{O}_{3}$
Do not allow iron oxides

(a) M1 Safety (in Process 1)

Sodium hydroxide / alkali is corrosive / harmful / caustic or sodium hydroxide is alkali(ne)

Ignore references to chromium compounds
OR
Bromine compounds are toxic / poisonous
"Carbon-neutral" alone is insufficient for M2

M2 Environmental

Ignore references to greenhouse gases
Process 2 could be used as a carbon sink / for carbon capture
OR
uses waste / recycled $\mathrm{CO}_{2} / \underline{\mathrm{CO}_{2}}$ from the factory $/ \mathrm{CO}_{2}$ from the bioethanol (or biofuel) production

OR
reduces or limits the amount of ${\underline{\mathrm{CO}_{2}}}_{2}$ released / given out (into the atmosphere)
OR
Process 2 uses renewable glucose / renewable resource(s)
(b) (i) M1 nucleophilic substitution

For M1, both words required

M2 must show an arrow from the lone pair of electrons on the oxygen atom of the negatively charged hydroxide ion to the C atom.

Penalise M2 if covalent $\mathrm{NaOH} / \mathrm{KOH}$ is used
Penalise one mark from M2 or M3 if half-headed arrows are used

M3 must show the movement of a pair of electrons from the $\mathrm{C}-\mathrm{Br}$ bond to the Br atom. Mark M3 independently provided it is from the original molecule

Penalise M3 for formal charge on C of the C-Br or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$
Penalise once only for a line and two dots to show a bond.

For M2 and M3 award full marks for an $\mathrm{S}_{\mathrm{N}} 1$ mechanism
For M2 and M3, maximum 1 of 2 marks for the mechanism if wrong reactant is used.
Penalise M3 if an extra arrow is drawn from the Br of the $C-B r$ bond to, for example, K^{+}
Accept the correct use of "sticks
NB The arrows here are double-headed
(c) M1 fermentation

Mark M2 to M4 independently
Three conditions in any order for M2 to M4
Penalise "bacteria" and "phosphoric acid" using the list principle

M2 (enzymes from) yeast or zymase
M3 $\quad 25^{\circ} \mathrm{C} \leq \mathrm{T} \leq 42^{\circ} \mathrm{C}$ OR $298 \mathrm{~K} \leq \mathrm{T} \leq 315 \mathrm{~K}$
Ignore reference to "aqueous" or "water", "closed container", "pressure, "lack of oxygen",
"concentration of ethanol" and "batch process" (i.e. not part of the list principle)

M4 anaerobic / no oxygen / no air OR neutral pH
(d) M1 primary OR 1° (alcohol)

Mark independently
M2 acidified potassium or sodium dichromate
For M2, it must be a whole reagent and/or correct formulae
OR $\quad \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ OR H${ }^{+} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Do not penalise incorrect attempt at formula if name is correct or vice versa
Accept phonetic spelling
If oxidation state given in name, it must be correct.

OR correct combination of formula and name

M3

$$
\begin{aligned}
& \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+4[\mathrm{O}] \longrightarrow \mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+2 \mathrm{H}_{2} \mathrm{O} \\
& \text { For M3 structures must be correct and not molecular formula }
\end{aligned}
$$

M4.(a) To prevent vigorous boiling / uneven boiling / bubbling vigorously
Reference to an effect on 'reaction' here loses this mark.
(b) Condenser

Accept 'condensation chamber' or 'condensation tube'.

Should show effective water jacket and central tube
If a flask is also drawn then the condenser must be at an appropriate angle.
Apparatus must clearly work.
Ignore direction of water flow.
Diagram must have a clear flow of vapour and water eg unblocked central tube or flow indicated by arrows.

M5.(a) 3-methylbutan-2-ol
(b)

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}$
(c) Elimination
(d)

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$
(e) Position
(f) CBA
(g)

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
Page 8
(h)

Allow $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}$

