

 (c) Stage 1: consider the groups joined to right hand carbon of the C=C bond Extended response Maximum of 5 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.
 Consider the atomic number of the atoms attached

M1 can be scored in stage 1 or stage 2

C has a higher atomic number than H, so CH₂OH takes priority

Stage 2: consider the groups joined to LH carbon of the C=C bond

Both groups contain C atoms, so consider atoms one bond further away

1

1

1

1

1

1

C, (H and H) from ethyl group has higher atomic number than H, (H and H) from methyl group, so ethyl takes priority

Stage 3: conclusion

The highest priority groups, ethyl and $CH_{\rm 2}OH$ are on same side of the C=C bond so the isomer is Z

Allow M5 for correct ECF conclusion using either or both wrong priorities deduced in stages 1 and 2

The rest of the IUPAC name is 3-methylpent-2-en-1-ol

(d) Moles of maleic acid = 10.0 / 116.0 = 8.62 × 10⁻²
 AND mass of organic product expected = (8.62 × 10⁻²) × 98.0 = 8.45 g
 Or moles of organic product formed = 6.53 / 98.0 = 6.66 × 10⁻²

% yield = 100 × 6.53 / 8.45

OR = $100 \times (6.66 \times 10^{-2}) / (8.62 \times 10^{-2})$

= 77.294 = 77.3%

AND statement that the student was NOT correct

M2. (a)
$$CH_3COCI + AICI_3 \rightarrow CH_3^{+}COCI + AICI^{+}$$

(1) equation (1)

penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside [] penalise wrong curly arrow in the equation or lone pair on AlCl₃ else ignore

1

1

2

1

1

horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure

M1 arrow from within hexagon to C or to + on C

3

1

4

l

1

1

(b) Nucleophilic addition NOT reduction

М3

M2 not allowed independent, but can allow M1 for attack of H on C+ formed

1-phenylethan(-1-)ol or (1-hydroxyethyl)benzene

(c) dehydration or elimination

(conc) H₂SO₄ or (conc) H₃PO₄ allow dilute and Al₂O₃ Do not allow iron oxides

[14]

M3. (a) M1 Safety (in Process 1)

<u>Sodium hydroxide / alkali</u> is <u>corrosive / harmful</u> / <u>caustic</u> or <u>sodium hydroxide</u> is <u>alkali(ne)</u>

Ignore references to chromium compounds

OR

<u>Bromine compounds</u> are <u>toxic / poisonous</u> *"Carbon-neutral" alone is insufficient for* **M2**

M2 Environmental

Ignore references to greenhouse gases

Process 2 could be used as a carbon sink / for carbon capture

OR

<u>uses waste / recycled CO₂ / CO₂ from the factory / CO₂ from the bioethanol (or biofuel)</u> production

OR

reduces or limits the amount of CO2 released / given out (into the atmosphere)

OR

Process 2 uses renewable glucose / renewable resource(s)

2

(b) (i) M1 <u>nucleophilic substitution</u> For **M1, both words** required

M2 must show an arrow from the lone pair of electrons on the oxygen atom of the negatively charged hydroxide ion to the C atom.

Penalise **M2** if covalent NaOH / KOH is used Penalise one mark from **M2** or **M3** if half-headed arrows are used

M3 must show the movement of a pair of electrons from the C–Br bond to the Br atom. Mark **M3** independently provided it is from the <u>original molecule</u>

Penalise **M3** for formal charge on C of the C–Br or incorrect partial charges on C–Br

Penalise once only for a line and two dots to show a bond.

For M2 and M3 award full marks for an S_N1 mechanism For M2 and M3, maximum 1 of 2 marks for the mechanism if wrong reactant is used. Penalise M3 if an extra arrow is drawn from the Br of the C–Br bond to, for example, K^{*} Accept the correct use of "sticks

NB The arrows here are double-headed

3

- (ii) **M1** B
 - **M2** C
 - **M3** A

3

4

(c) M1 fermentation

Mark M2 to M4 independently

Three conditions in any order for M2 to M4

Penalise "bacteria" and "phosphoric acid" using the list principle

- M2 (enzymes from) yeast or zymase
- **M3** $25^{\circ}C \le T \le 42^{\circ}C$ OR $298 \text{ K} \le T \le 315 \text{ K}$

Ignore reference to "aqueous" or "water", "closed container", "pressure, "lack of oxygen", "concentration of ethanol" and "batch process" (i.e. not part of the list principle)

- M4 anaerobic / no oxygen / no air OR neutral pH
- (d) **M1** primary OR 1° (alcohol) *Mark independently*
 - M2 <u>acidified potassium or sodium dichromate</u> For M2, it must be a whole reagent and/or correct formulae

OR H₂SO₄ / K₂Cr₂O₇ OR H⁺ / K₂Cr₂O₇
 Do not penalise incorrect attempt at formula if name is correct or vice versa
 Accept phonetic spelling
 If oxidation state given in name, it must be correct.

For M2 accept acidified potassium manganate(VII)

OR correct combination of formula and name

М3

HOCH₂CH₂CH₂CH₂OH + **4**[O] → HOOCCH₂CH₂COOH + **2**H₂O For **M3** structures must be correct and not molecular formula

3

> Should show effective water jacket and central tube If a flask is also drawn then the condenser must be at an appropriate angle. Apparatus must clearly work. Ignore direction of water flow. Diagram must have a clear flow of vapour and water eg unblocked central tube or flow indicated by arrows.

M5.(a) 3-methylbutan-2-ol

1

1

[3]

(b)

(c) Elimination

- (e) Position
- (f) CBA 1

1

1

1

1

1

(h) $H_3C \longrightarrow CH_3$ $H_3C \longrightarrow CH_2OH$ CH_3 Allow $(CH_3)_3CCH_2OH$

[9]

1

1