M1.		(a)	(i) $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2;$	
			(penalise C_2H_6O once only in this question)	1
		(ii)	<u>Concentrated</u> H ₂ SO ₄ OR <u>concentrated</u> H ₃ PO ₄ OR Al ₂ O ₃ ; (penalise aqueous or dilute as a contradiction)	1
			$C_2H_5OH \rightarrow C_2H_4 + H_2O \text{ OR } C_2H_5OH \rightarrow H_2C = CH_2 + H_2O;$ (penalise CH_2CH_2 and CH_2-CH_2 and CH_2 : CH_2 for ethene)	1
	(b)	Nicł	kel OR Ni OR platinum OR Pt OR palladium OR Pd;	1
		Hyd	rogen OR H ₂ ;	1
	(c)	(i)	C ₁₈ H ₃₄ O ₂ Only;	1
			C₃H₁⁊O Only; (empirical formula is not consequential on molecular formula)	1
		(ii)	(An unsaturated compound) contains (at least) <u>one double bond</u> OR	
			Contains C=C;	
			(must be a positive statement)	1
		(iii)	M1: Bromine water	
			OR	
			Br₂(aq)	
			OR	
			Bromine	
			OR	

Br₂;

(penalise "bromide water", but mark on)

M1: decolourised or goes colourless

OR

from brown/red/orange/yellow to colourless;

(Must be "colourless" not "clear" for M2) (chemical error if no reagent or wrong reagent, loses both marks) (credit KMnO ₄ for M1, (purple) to colourless for M2 (if acidified) OR (purple) to brown/brown precipitate (if alkaline or unspecified) (No credit for hydrogen or iodine as reagents)

[10]

1

1

M2.

(a)

- (i) Reagent: Hydrogen of H_2 (1) Conditions: Ni (catalyst) (Ignore Pt) (1) 100 - 200 °C or heat (1) Not 'high temp' or 'warm' M1 = 0, M2 = 1 then M3 = 0 max or M1 = M2 = 0 then M3 = 0M3 tied to M1. Only award M3 if M1 earned
- (ii) Difference in structure: soft margarine less hydrogenated or has more C=C bonds or is more unsaturated than hard margarine (1)
 Difference in melting point: soft has lower melting point (1)
 Must be comparison

5

- (b) (i) 3-methylbutan-2-ol **(1)** *No alternatives*
 - (ii) elimination or dehydration (1)

(iv)

Alkene 1 $CH_2 = C - C - CH_3$ $H CH_3$ H

> Double bond must be shown Accept any correct unambiguous structures if but- 1-ene and but-2-ene offered, allow M2

5

[10]

M3. (a) (i) 2-methylpropan-2-ol (1) OR the second one

(ii) Dehydrating agent: $\begin{array}{c} \operatorname{conc} H_2 \operatorname{SO}_4 \ \operatorname{OR} \ \operatorname{conc} H_3 \operatorname{PO}_4 \ \operatorname{OR} \ \operatorname{Al}_2 \operatorname{O}_3 \ \operatorname{CH}_3 \operatorname{PO}_4 \ \operatorname{OR} \ \operatorname{CH}_3 \operatorname{PO}_4 \ \operatorname{OR} \ \operatorname{Al}_2 \operatorname{O}_3 \ \operatorname{CH}_3 \operatorname{PO}_4 \ \operatorname{OR} \ \operatorname{CH}_3 \operatorname{PO}_4 \ \operatorname{OR} \ \operatorname{Al}_2 \operatorname{O}_3 \ \operatorname{CH}_3 \operatorname{PO}_4 \ \operatorname{OR} \ \operatorname{CH}_3 \operatorname{PO}_4 \ \operatorname{CH}_3 \ \operatorname{$

if b(i) is blank, b(ii) equation must be full for cred i.e. NOT C₄H₉OH Mark consequential on b(i)

3

(b) (i) *Isomer*: butan-2-ol OR <u>the fourth one</u> [look at name in table] wrong isomer = CE

Structure of the ketone:

(ii) *Isomer*: butan-1-ol OR <u>the first one</u> OR 2-methylpropan-1-ol OR <u>the third one</u> *[look at name in table]*

> Wrong isomer = CE Structure of the aldehyde:

(iii)

Reagent	M1	Tollen's (AgNO₃/NH₃)	Fehling's
Observation with ketone	M2	Stays colourless no change	stays blue no change
Observation with aldehyde	М3	Silver mirror black ppt	<u>red solid</u> orange/ <u>red</u> brown/ <u>red</u> ppt/solid

Other include(*) $K_2Cr_2O_7 / H_2SO_4$ $KMnO_4/H_2SO_4$ Schiff's Benedict's Wrong reagent R No reagent = CE Penalise AgNO₃ [Ag(NH₃)₂] but allow M2 and M3 sequentially.

(*) $K_2Cr_2O_7 / H_2SO_4$ acidified ketone aldehyde

	orange no change	green	
KMnO₄/H₂SO₄ acidified	purple no change	colourless (v. Pale pink)	
Benedi	ict's ≡ Fehling's	; Schiff's colouless → pink with CH0 violet	Э 7

(c) Equation: $CH_3CH_2CH_2CH_2OH$ (or C_4H_9OH) + 2[O] $\rightarrow CH_3CH_2CH_2COOH$ (or C_3H_7COOH) + H_2O (1)

Name of product: butanoic acid (1) Accept butaneoic acid

[12]

2

 M4. (a) <u>Reaction 2</u>: NaOH OR KOH (1) M1 alcohol (ic) OR ethanol (ic)(1) M2 ignore heat Condition mark <u>linked to correct reagent</u> but award M2 if OH or base or alkali mentioned
 <u>Reaction 3</u>: concentrated H₂SO₄ OR H₃PO₄ M1 (1) heat (1) M2 OR 150°C - 200°C Condition mark <u>linked to correct reagent</u> but award M2 if

 H_2SO_4 or H_3PO_4 , but <u>not</u> concentrated Penalise reagent <u>and</u> condition if dilute H_2SO_4 / H_3PO_4

4

(b) <u>Mechanism</u>:

Award M3 (C - C1) independently M1 and M2 must be to / from correct places

E1 mechanism possible in which M2

Name: of mechanism = elimination (1) NOT dehydrohalogenation Ignore "base" OR "nucleophilic" before elimination

Reason: Reaction 2 has (very) low yield (1)

QoL OR chloroethane has to be made (from ethane) OR chloroethane is expensive OR chloroethane is not redily available

(c) Mechanism:

(M3 could be awarded on protonated alcohol) M3

Name of mechanism = elimination (1) NOT dehydration alone

Reason: Ethanol could come from (fermentation of) renewable sugars / glucose / carbohydrates / sources (1) QoL

6

5

M6.		(a)	M1	fermentation	1		
		M2	deh	ydration or elimination	1		
	(b)	(i) (ii)	yea cono	ist OR zymase OR an enzyme centrated sulphuric or phosphoric acid	1		
				(penalise aqueous or dilute as a contradiction)	1		
	(c)	(i)	prin	nary or 1°	1		
		(ii)	suga OR OR	ar or glucose or ethanol is renewable ethanol does not contain sulphur-containing impurities ethanol produces <u>less</u> pollution or is <u>less</u> smoky or <u>less</u> CO/C (the objective is a positive statement about ethanol) (penalise the idea that ethanol is an infinite source or vague statements that ethanol has less impurities) (penalise the idea that ethanol produces no pollution)			
					1		
	(d)	$(d) \qquad C_2H_6 \rightarrow C_2H_4 + H_2$					
	(e)	Add	lition				

(ignore self or chain as a preface to "addition ") (penalise additional)

[8]

M7.D

[1]