M1.(a) 0.943 g water (M1)

If Mr of NiSO₄ wrong, can allow M1 and M3 from method 1 i.e. max 2

NiSO₄ H₂O $\frac{1.344}{154.8}$ (M2) $\frac{0.943}{18}$ (M3) (8.68 × 10⁻³ 0.052) 1 6 or x = 6 (M4) Allow Mr = 155

Allow other methods e.g.

$$M_{\rm r} ({\rm NiSO_4}) = 58.7 + 32.1 + 64.0 = 154.8$$

n(NiSO_4) = $\frac{1.344}{154.8} = 0.008682 \text{ mol} (M1)$
 $\frac{2.287}{0.008682} = (263.4) (M2)$
so $18x = 263.4 - 154.8 = (108.6) (M3)$
so $x = \frac{108.6}{18} = 6$ (M4)

If using alternative method and Mr of NiSO₄ wrong, allow ecf to score M2 and M3 only i.e. max 2

(b) re-heat

Heat to constant mass = 2 marks

check that mass is unchanged *M2 dependent on M1 Allow as alternative: M1: record an IR spectrum M2: peak between 3230 and 3550 (cm⁻¹)*

[6]

1

4

M2. Mass of crucible and boric acid on the y–axis Axes must be labelled but do not penalise lack of units (unless incorrect).	1
Suitable scale used Plotted points must cover at least half the printed grid.(both directions).	1
All points plotted correctly Allow + / - one small square.	1
Suitable line drawn Good best-fit line based on their points (+ / – one small square). Do not award if kinked, doubled or very thick line.	1 [4]
M3. (a) (i) M1 - M_r calcium phosphate = 310(.3) If M_r wrong, lose M1 and M5.	1
M2 - Moles calcium phosphate = $\frac{7.26}{M1}$ (= 0.0234) 0.0234 moles can score M1 and M2. If M, incorrect, can score M2 for $\frac{7.26}{M1}$. Allow M2 and / or M3 to 2 significant figures here but will lose M5 if answer not 1.23.	1

M3 - Moles phosphoric acid = $2 \times 0.0234 = 0.0468$ Allow student's M2 × 2. If not multiplied by 2 then lose M3 and M5.

1

1

M4 - Vol phosphoric acid = 0.038(0) dm³ If not 0.038(0) dm³ then lose M4 and M5.

Conc phosphoric acid = $\frac{0.0468}{0.038(0)}$

M5 = <u>1.23</u> (mol dm⁻³) *This answer only – unless arithmetic or transcription error that has been penalised by 1 mark. Allow no units but incorrect units loses M5.*

(ii) $\frac{492.3}{688.3} \times 100$ OR $\frac{492}{688} \times 100$

1 mark for both *M*^{*r*} correctly placed.

2

1

1

(b) $3Ca(OH)_2 + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 6H_2O$ Allow multiples.

(c)

```
Correct ratio (M3).
```

 $CaH_4P_2O_8$ **OR** $Ca(H_2PO_4)_2$ **OR** x = 2Value of x or correct formula (M4).

Alternative

Са

 H_2PO_4 Ca = 1.67 g (M1). $\frac{1.67}{40.1}$ $\frac{8.09}{97.0}$ Mark for dividing by correct A, / M, in Ca and H_2PO_4 (M2). If M1 incorrect can only score M2. = 0.042 0.083 1 2 Correct ratio (M3).

CaH₄P₂O₈ **OR** Ca(H₂PO₄)₂ **OR** x = 2Value of x or correct formula (M4).

M4.(a) 2,2,4-trimethylpentane

(b) 5

(c) $C_{20}H_{42} \longrightarrow C_8H_{18} + 2C_3H_6 + 3C_2H_4$

(d) Mainly alkenes formed

[12]

1

1

1

1

1

(e) 4 (monochloro isomers)

(g)
$$C_8H_{17}{}^{35}CI = 96.0 + 17.0 + 35.0 = 148.0$$

and $C_8H_{17}{}^{37}CI = 96.0 + 17.0 + 37.0 = 150.0$
Both required

$$(1.5 \times 148.0) + (1.0 \times 150.0)$$

 M_r of this C₈H₁₇Cl 2.5 2.5 = 148.8

(h)
$$\frac{24.6}{12}$$
 $\frac{2.56}{1}$ $\frac{72.8}{35.5} = 2.05 : 2.56 : 2.05$
Simplest ratio = $\frac{2.05}{2.05} : \frac{2.05}{2.05} : \frac{2.05}{2.05}$
= 1 : 1.25 : 1

Whole number ratio $(\times 4) = 4 : 5 : 4$

$$\mathsf{MF} = \mathsf{C}_{8}\mathsf{H}_{10}\mathsf{CI}_{8}$$

[12]

1

1

M5.(a) Percentage of oxygen by mass = 100 - 40.9 - 4.5 = 54.6

	С	Н	0
% Divide by A _r	<u>40.9</u> 12	<u>4.5</u> 1	<u>54.6</u> 16
	= 3.41	= 4.5	= 3.41

Divide by smallest =	<u>3.41</u> = 3.41	1	<u>4.5</u> 3.41	= 1.32	<u>3.41</u> = 3.41	1
Nearest whole number r	atio = 1	× 3	1.32	× 3	1 × 3	
	= 3	: 3.96 : 3	3			
Nearest integer ratio =	3	:	4	:	3	

Empirical formula C₃H₄O₃ Empirical formula mass = 88 = molecular formula mass

Therefore, molecular formula is same as the empirical formula - $C_3H_4O_3$

1

1

1

(b) $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$

(c) Advantage – ethanol is produced at a faster rate

	Disadvantage – more energy is used / required in the reaction	1	
(d)	Air gets in / oxidation occurs	1	
(e)	Alcohol OH absorption in different place (3230–3550 cm ⁻¹) from acid OH absorption (2500–3000 cm ⁻¹)	1	
	The C=O in acids has an absorption at 1680–1750 cm⁻¹	1	[10]