Q1.The table below shows data for the four hydrocarbons ethyne, propone, propene and propane. ΔHc is the standard enthalpy of combustion of these hydrocarbons.

Compound	Name	M r	−ΔHc / kJ mol⁻¹
HC≡CH	ethyne	26	1300
HC≡CCH₃	propyne	40	1940
H ₂ C=CHCH ₃	propene	42	2060
CH ₃ CH ₂ CH ₃	propane	44	2220

The complete combustion of 2.0 g of one of the above hydrocarbons releases exactly 100 kJ of heat energy.

This hydrocarbon is

- **A** ethyne
- **B** propyne
- **C** propene
- **D** propane

(Total 1 mark)

Q2.When 0.10 g of propane was burned the quantity of heat evolved was 5.0 kJ. The enthalpy of combustion of propane in kJ mol⁻¹ is

- **A** -800
- **B** -1500
- **C** -2200
- **D** -2900

Q3. This question is about the reaction given below.

$$CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	H₂O(g)	CO₂(g)	H₂(g)
ΔHr / kJ mol ⁻¹	-110	-242	-394	0

The standard enthalpy change for this reaction of carbon monoxide and steam is

- **A** +42 kJ mol⁻¹
- **B** −42 kJ mol⁻¹
- C +262 kJ mol⁻¹
- **D** -262 kJ mol⁻¹

(Total 1 mark)

Q4.Use the information below to answer this question.

$$C(s) + O_{2}(g) \rightarrow CO_{2}(g)$$

$$\Delta H^{\bullet} = -394 \text{ kJ mol}^{-1}$$

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(I)$$

$$\Delta H^{\bullet} = -286 \text{ kJ mol}^{-1}$$

$$4C(s) + 5H_{2}(g) \rightarrow C_{4}H_{10}(g)$$

$$\Delta H^{\bullet} = -126 \text{ kJ mol}^{-1}$$

The standard enthalpy of combustion of butane, in kJ mol⁻¹, is

- **A** -2880
- **B** -2590
- **C** -806
- **D** -554

Q5.Use the information below to answer this question.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393.5 \text{ kJ mol}^{-1}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$$
 $\Delta H = -285.8 \text{ kJ mol}^{-1}$

$$3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$$
 $\Delta H = -104.0 \text{ kJ mol}^{-1}$

$$4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$$
 $\Delta H = -125.2 \text{ kJ mol}^{-1}$

The value in kJ mol⁻¹ of the enthalpy of thermal dissociation when butane forms propane, hydrogen and carbon is

- **A** -26.3
- **B** −17.5
- **C** +17.5
- **C** +21.2

(Total 1 mark)

Q6.Use the information below to answer this question.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393.5 \text{ kJ mol}^{-1}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$$
 $\Delta H = -285.8 \text{ kJ mol}^{-1}$

$$3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$$
 $\Delta H = -104.0 \text{ kJ mol}^{-1}$

$$4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$$
 $\Delta H = -125.2 \text{ kJ mol}^{-1}$

The value in kJ mol⁻¹ for the enthalpy of combustion of propane is

- **A** -211.7
- **B** -419.7
- **C** -2220
- **C** -2878

Q7.The data below refer to the industrial production of nitric acid from ammonia.

Reaction 1
$$4NH_3(g) + 5O_2(g)$$
 \Rightarrow $4NO(g) + 6H_2O(g)$ ΔH = -909 kJ mol⁻¹

Reaction 2
$$2NO(g) + O_2(g)$$
 $2NO_2(g)$ $\Delta H = -115 \text{ kJ mol}^{-1}$

Reaction 3
$$3NO_2(g) + H_2O(I)$$
 \rightleftharpoons $2HNO_3(aq) + NO(g)$ ΔH = -117 kJ mol⁻¹

The direct oxidation of ammonia to nitrogen dioxide can be represented by the equation

$$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$$

for which the standard enthalpy change, in kJ mol⁻¹, is

- **A** -1139
- **B** -1024
- **C** -794
- **D** -679

Q8. Using the information below, answer this question.

$$Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(g)$$
 $\Delta H = +96 \text{ kJ mol}^{-1}, \Delta S = +138 \text{ J K}^{-1} \text{ mol}^{-1}$

	Fe₂O₃(s)	H₂(g)	Fe(s)
ΔH ₁ / kJ mol⁻¹	-822.0	0	0
ΔS / J K ⁻¹ mol ⁻¹	90.0	131.0	27.0

The standard enthalpy of formation of steam is

- **A** +286 kJ mol⁻¹
- **B** +242 kJ mol⁻¹
- **C** –242 KJ mol⁻¹
- **D** –286 kJ mol⁻¹

(Total 1 mark)

Q9. Using the data below, which is the correct value for the standard enthalpy of formation for TiCl₄(I)?

$$C(s) + TiO_2(s) + 2CI_2(g) \rightarrow TiCI_4(I) + CO_2(g)$$

$$Ti(s) + O_2(g) \rightarrow TiO_2(s)$$

$$\Delta H_{\mathbf{f}}^{\mathbf{g}} = -912 \text{ kJ mol}^{-1}$$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H_{\mathbf{f}}^{\mathbf{g}} = -394 \text{ kJ mol}^{-1}$$

- **A** −1538 kJ mol⁻¹
- **B** −1094 kJ mol⁻¹
- **C** -750 kJ mol⁻¹
- **D** +286 kJ mol⁻¹

Q10.When ethanamide (CH₃CONH₂) burns in oxygen the carbon is converted into carbon dioxide, the hydrogen is converted into water and the nitrogen forms nitrogen gas.

Substance	ethanamide	carbon dioxide	water
Enthalpy of formation ($\Delta H^{?}$) / kJ mol $^{-1}$	-320	-394	-286

Using the data above, which one of the following is a correct value for the enthalpy of combustion of ethanamide?

- **A** -1823 kJ mol⁻¹
- **B** −1183 kJ mol⁻¹
- **C** -1000 kJ mol⁻¹
- **D** −360 kJ mo1⁻¹

(Total 1 mark)

Q11.In which one of the following reactions is the standard enthalpy change equal to the standard enthalpy of formation of lithium fluoride?

- A $Li(g) + F(g) \rightarrow LiF(s)$
- **B** $Li^+(g) + F^-(g) \rightarrow LiF(s)$
- C Li⁺(aq) + F⁻(g) \rightarrow LiF(s)
- **D** Li(s) + $\frac{1}{2}$ F₂(g) \rightarrow LiF(s)

Q12.Consider the reactions

$$C_2H_4(g) + 2O_2(g) \rightarrow 2CO(g) + 2H_2O(g)$$

$$\Delta H^{\bullet} = -758 \text{ kJ mol}^{-1}$$

$$2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$$

$$\Delta H$$
 = +52 kJ mol⁻¹

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$$

$$\Delta H = -242 \text{ kJ mol}^{-1}$$

The enthalpy of formation of carbon monoxide is

- -111 kJ mol⁻¹ Α
- В -163 kJ mol⁻¹
- C -222 kJ mol⁻¹
- -464 kJ mol⁻¹

(Total 1 mark)

Q13. Given the following data

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$
 $\Delta H = -75 \text{ kJ mol}^{-1}$

$$\Delta H = -75 \text{ kJ mol}^{-1}$$

$$H_2(g) \rightarrow 2H(g)$$

$$\Delta H = +436 \text{ kJ mol}^{-1}$$

which one of the following is the enthalpy change, in kJ mol⁻¹, of the reaction below?

$$CH_4(g) \rightarrow C(s) + 4H(g)$$

- -947
- В +511
- C +797
- D +947

Q14.Nitric acid is produced industrially from ammonia, air and water using the following sequence of reactions:

(1) $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$

 $\Delta H = -909 \text{ kJ mol}^{-1}$

(2) $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

- $\Delta H = -115 \text{ kJ mol}^{-1}$
- (3) $3NO_2(g) + H_2O(I) \rightarrow 2HNO_3(aq) + NO(g)$
- $\Delta H = -117 \text{ kJ mol}^{-1}$

Which is the enthalpy change (in kJ mol⁻¹) for the following reaction?

$$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$$

- **A** -679
- **B** -794
- **C** -1024
- **D** -1139