M1.(a) (i) $2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Or multiples
(ii) to speed up the reaction

OR
(provide a) catalyst or catalyses the reaction or biological catalyst OR
release / contain / provides an enzyme
Ignore "fermentation"
Ignore "to break down the glucose"
Not simply "enzyme" on its own
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

Any correct representation for the two organic structures. Brackets not essential.
Not "sticks" for the structures in this case
(ii) Secondary (alcohol) OR 2° (alcohol)
(c) M1 $\quad \mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

OR $\quad \mathrm{q}=150 \times 4.18 \times 8.0$
Award full marks for correct answer
In M1, do not penalise incorrect cases in the formula
M2 $=(\pm) 5016(\mathrm{~J}) \boldsymbol{O R} 5.016(\mathrm{~kJ}) \boldsymbol{O R} 5.02(\mathrm{~kJ})$
(also scores M1)
M3 This mark is for dividing correctly the number of kJ by the number of moles and arriving at a final answer in the range shown.
Using 0.00450 mol
therefore $\Delta \mathrm{H}=-1115\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
OR - 1114.6 to - $1120\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Range (+)1114.6 to (+)1120 gains $\mathbf{2}$ marks
BUT - $\mathbf{1 1 1 0}$ gains $\mathbf{3}$ marks and +1110 gains $\mathbf{2}$ marks

AND - $\mathbf{1 1 0 0}$ gains $\mathbf{3}$ marks and +1100 gains $\mathbf{2}$ marks
Award full marks for correct answer
In M1, do not penalise incorrect cases in the formula
Penalise M3 ONLY if correct numerical answer but sign is incorrect; (+)1114.6 to (+)1120 gains 2 marks
Penalise M2 for arithmetic error and mark on
If $\Delta T=281$; score $q=m$ c ΔT only
If $c=4.81$ (leads to 5772) penalise M2 ONLY and mark on for M3 = - 1283
Ignore incorrect units in M2
If units are given in M3 they must be either $\mathrm{kJ} \mathrm{or}_{\mathrm{kJ} \mathrm{mol}}{ }^{-1}$ in this case
(d) M1 The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / element

M2 is burned / combusts / reacts completely in oxygen $O R$ burned / combusted / reacted in excess oxygen

M3 with (all) reactants and products / (all) substances in standard / specified states

OR

(all) reactants and products /(all) substances in normal states under standard conditions / $100 \mathrm{kPa} / 1 \mathrm{bar}$ and specified T / 298 K

For M3
Ignore reference to 1 atmosphere
(e) M1
$\sum \mathrm{B}$ (reactants) $-\Sigma \mathrm{B}$ (products) $=\Delta H$ OR
Sum of bonds broken - Sum of bonds formed $=\Delta H$ OR
$2 \mathrm{~B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}=\mathrm{O})+6 \mathrm{~B}(\mathrm{C}-\mathrm{H})+4 \mathrm{~B}(\mathrm{O}=\mathrm{O})(\mathrm{LHS})$
$-6 B(C=O)-6 B(O-H)(R H S)=\underline{\Delta H}$
M2 (also scores M1)
$2(348)+805+6(412)+4(496)$ [LHS $=5957]$
(696) (2472) (1984)
$-6(805)-6(463)[R H S=(-) 7608]=\Delta H$
(4830) (2778)

OR using only bonds broken and formed (5152-6803)
M3
$\Delta H=-1651\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

Candidates may use a cycle and gain full marks.

Correct answer gains full marks
Credit 1 mark for (+) 1651 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication / addition error; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with $4 \mathrm{O}_{2}, 3 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ OR a clear statement of M1 which could be in words and scores only M1
Allow a maximum of one mark if the only scoring point is
LHS = 5957 (or 5152) OR RHS $=7608$ (or 6803)
Award 1 mark for +1651

In M1, the acid must be concentrated. Ignore an incorrect attempt at the correct formula that is written in addition to the correct name.

M2 Re-circulate / re-cycle the (unreacted) ethene (and steam) / the reactants
OR pass the gases over the catalyst several / many times
In M2, ignore "remove the ethanol".
Credit "re-use".
(ii) M1
(By Le Chatelier's principle) the equilibrium is driven / shifts / moves to the right / L to R / forwards / in the forward direction

M2 depends on a correct statement of M1
The equilibrium moves / shifts to

- oppose the addition of / increased concentration of / increased moles / increased amount of water / steam
- to decrease the amount of steam / water

Mark M3 independently

M3 Yield of product / conversion increase OR ethanol increases / goes up / gets more
(iii) M1 Poly(ethene) / polyethene / polythene / HDPE / LDPE

M2 At higher pressures

More / higher cost of electrical energy to pump / pumping cost OR
Cost of higher pressure equipment / valves / gaskets / piping etc.
OR expensive equipment
Credit all converse arguments for M2
(b) M1 for balanced equation

M2 for state symbols in a correctly balanced equation
$2 \mathrm{C}(\mathrm{s} /$ graphite $)+3 \mathrm{H}_{2}(\mathrm{~g})+$
$1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})$
($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$)
Not multiples but credit correct state symbols in a correctly balanced equation.
Penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ but credit correct state symbols in a correctly
(c) (i) M1 The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / element If standard enthalpy of formation CE=0

M 2 is burned / combusts / reacts completely in oxygen OR burned / combusted / reacted in excess oxygen

M3 with (all) reactants and products / (all) substances in standard / specified states
OR (all) reactants and products / (all) substances in normal states under standard conditions / $100 \mathrm{kPa} / 1 \mathrm{bar}$ and specified T / 298 K

For M3
Ignore reference to 1 atmosphere
(ii) M1

Correct answer gains full marks
$\underline{\Sigma \mathrm{B}}$ (reactants) $-\Sigma \mathrm{B}($ products $)=\Delta H$
Credit 1 mark for (+) $1279\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

OR
Sum of bonds broken - Sum of bonds formed $=\Delta H$ OR
$\mathrm{B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+5 \mathrm{~B}(\mathrm{C}-\mathrm{H})+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})(\mathrm{LHS})$
$-4 B(C=O)-6 B(O-H)(R H S)=\underline{\Delta H}$
M2 (also scores M1)
$348+360+463+5(412)+3(496)$ [LHS $=4719]$
(2060) (1488)
$-4(805)-6(463)[R H S=-5998]=\Delta H$
(3220) (2778)

OR using only bonds broken and formed (4256-5535)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 2C and 6H and 7O OR a clear statement of M1 which could be in words and scores only M1

M3
$\Delta \mathrm{H}=\mathbf{- 1 2 7 9}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Allow a maximum of one mark if the only scoring point is LHS = 4719 OR $R H S=5998$
(d) (i) Reducing agent $\boldsymbol{O R}$ reductant $\boldsymbol{O R}$ electron donor $O R$ to reduce the copper oxide

Not "reduction".
Not "oxidation".
Not "electron pair donor".
(ii) $\mathrm{CH}_{3} \mathrm{COOH}$

M3.(a) $\quad q=500 \times 4.18 \times 40$
Do not penalise precision.
$=83600 \mathrm{~J}$
Accept this answer only.
Ignore conversion to 83.6 kJ if 83600 J shown.
Unit not required but penalise if wrong unit given.
Ignore the sign of the heat change.
An answer of 83.6 with no working scores one mark only.
An answer of 83600 with no working scores both marks.
(b) Moles $(=83.6 / 51.2)=1.63$

Using 77400 alternative gives 1.51 mol
Allow (a) in kJ / 51.2
Do not penalise precision.

Mass $=1.63 \times 40(.0)=65.2(\mathrm{~g})$
Allow 65.3 (g)

Using 77400 alternative gives 60.4 to 60.5
Allow consequential answer on M1.
1 mark for M_{r} (shown, not implied) and 1 for calculation.
Do not penalise precision.
(c) Molarity $=1.63 / 0.500=3.26 \mathrm{~mol} \mathrm{dm}-3$

Allow (b) M1 $\times 2$
Using 1.51 gives 3.02
(d) Container splitting and releasing irritant / corrosive chemicals Must have reference to both aspects; splitting or leaking (can be implied such as contact with body / hands) and hazardous chemicals.
Allow 'burns skin / hands' as covering both points Ignore any reference to 'harmful'.
Do not allow 'toxic'.
(e) (i) $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$

Allow fractions / multiples in equation.
Ignore state symbols.
(ii) Iron powder particle size could be increased / surface area lessened

Decrease in particle size, chemical error $=0 / 3$
Change in oxygen, chemical error $=0 / 3$

Not all the iron reacts / less reaction / not all energy released / slower release of energy / lower rate of reaction

Mark points M2 and M3 independently.

Correct consequence of M2
An appropriate consequence, for example

- too slow to warm the pouch effectively
- lower temperature reached
- waste of materials
(f) (i) Conserves resources / fewer disposal problems / less use of landfill / fewer waste products

Must give a specific point.
Do not allow 'does not need to be thrown away' without qualification.
Do not accept 'no waste'.
(ii) Heat to / or above $80^{\circ} \mathrm{C}$ (to allow thiosulfate to redissolve)

Accept 'heat in boiling water'.
If steps are transposed, max 1 mark.

Allow to cool before using again
Reference to crystallisation here loses this mark.

