M1.(a) (i) reduction $O R$ reduced $O R$ redox $O R$ reduction-oxidation
Not "oxidation" alone
(ii) $\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$

Ignore state symbols
Do not penalise absence of charge on electron
Credit $\mathrm{Fe}^{3+} \longrightarrow \mathrm{Fe}-3 e^{-}$
Credit multiples
1
(b) (i) Because (one of the following)

CO is not the only product $O R$
Reference to "incomplete combustion to form CO" does not answer the question
(Some) complete combustion (also)occurs OR
CO_{2} is (also) formed
Further oxidation occurs
(ii) The enthalpy change / heat (energy) change at constant pressure in a reaction is independent of the route / path taken (and depends only on the initial and final states)

1
(iii) M1 The enthalpy change / heat change at constant pressure when 1 molof a compound / substance / element
For M1, credit correct reference to molecule/s or atom/s
M2 is burned completely / undergoes complete combustion in (excess) oxygen

M3 with all reactants and products / all substances in standard states For M3

Ignore reference to 1 atmosphere

OR all reactants and products / all substances in normal / specified states under standard conditions / $100 \mathrm{kPa} / 1 \mathrm{bar}$ and specified T / 298 K
(c) M1 (could be scored by a correct mathematical expression which must have all \underline{H} symbols and the Σ)

Correct answer gains full marks
Credit 1 mark ONLY for -1 $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
M1 $\Delta H_{\mathrm{t}}=\sum \Delta H_{\mathrm{t}}$ (products) $-\sum \Delta H_{\mathrm{t}}$ (reactants)
Credit 1 mark ONLY for - 27 ($\mathrm{kJ} \mathrm{mol}^{-1}$) i.e. assuming value for $\mathrm{Fe}(\mathrm{l})=0$
$O \boldsymbol{R}$ correct cycle of balanced equations with $2 \mathrm{Fe}, 3 \mathrm{C}$ and $3 \mathrm{O}_{2}$
M2 $\Delta H_{r}=2(+14)+3(-394)-(-822)-3(-111)$
$=28-1182+822+333$
(This also scores M1)
M3 $\quad=(+) 1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(Award 1 mark ONLY for - 1)
(Award 1 mark ONLY for - 27)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with $2 \mathrm{Fe}, 3 \mathrm{C}$ and $3 \mathrm{O}_{2} \mathrm{OR}$ a clear statement of M1 which could be in words and scores only M1
(d) (i) $\mathrm{C}(\mathrm{s}) \quad+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{CO}_{2}(\mathrm{~g})$

State symbols essential
Possible to include C(s, graphite)
(ii) These two enthalpy changes are for the same reaction / same equation / same reactants and products

Penalise reference to CO_{2} being produced by a different route

OR

They both make one mole of carbon dioxide only from carbon and oxygen (or this idea clearly implied)
"both form CO_{2} " is not sufficient (since other products might occur e.g.CO)

OR

The same number and same type of bonds are broken and formed

M2. (a) One from

- $\quad \mathrm{Ti}$ is not produced
- TiC / carbide is produced OR titanium reacts with carbon
- Product is brittle
- Product is a poor engineering material

Penalise "titanium carbonate"
Ignore "impure titanium"
Credit "titanium is brittle"
(b) Heat (energy) change at constant pressure

QoL
(c) The enthalpy change in a reaction is independent of the route taken (and depends only on the initial and final states)

Credit "heat change at constant pressure" as an alternative to "enthalpy change"
(d) M1 The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / product

For M1, credit correct reference to molecule/s or atom/s
M2 is formed from its (constituent) elements
M3 with all reactants and products / all substances in

standard states

OR all reactants and products / all substances in normal states under standard conditions / $100 \mathrm{kPa} / 1$ bar and any specified T (usually 298 K)

Ignore reference to 1 atmosphere
(e) (i) $\mathrm{Na} /$ it is not in its standard state / normal state under standard conditions

OR
Standard state / normal state under standard conditions for Na is solid / (s)

QoL
Ignore "sodium is a liquid or sodium is not a solid"
(ii) $M 1 \Delta H_{r}=\sum \Delta H_{f}$ (products) $-\sum \Delta H_{f}$ (reactants)
$\mathbf{M 2} \Delta \mathbf{H}_{\mathrm{r}}=4(-411)-(-720)-4(+3) \quad=-1644+720-12$ (This also scores M1)

M3 $\quad=-936\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Correct answer gains full marks
Credit 1 mark for +936 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
Credit 1 mark for - 924 ($\mathrm{kJ} \mathrm{mol}^{-1}$)i.e. assuming value for $\mathrm{Na}(\mathrm{l})=0$
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with $2 \mathrm{Cl}_{2}$ and 4 Na OR a clear complete statement of M1 which could be in words and scores only M1
(iii) Reducing agent

Ignore "reduces titanium"
OR reductant OR reduces TiCl_{4}
OR electron donor

M3. (a) Heat (energy) change at constant pressure
Ignore references to standard conditions, but credit specified pressure.
(b) The enthalpy change/heat (energy) change (at constant pressure) in a reaction is independent of the route/path taken (and depends only on the initial and final states)

1
(c) $\Delta H+963=-75-432$ OR $\Delta H+963=-507$ (M1)
$\Delta H=-75-432-963$ (M1 and M2)
$\Delta H=\underline{-1470}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Award 1 mark for +1470
Award full marks for correct answer Ignore units.
Ignore numbers on the cycle
M1 and M2 can score for an arithmetic error

M4. (a) Enthalpy change for the formation of 1 mol of gaseous atoms allow heat energy change for enthalpy change

From the element (in its standard state)
ignore reference to conditions

Enthalpy change to separate 1 mol of an ionic lattice/solid/compound enthalpy change not required but penalise energy

Into (its component) gaseous ions mark all points independently
(b) $\quad \Delta H_{\mathrm{L}}=-\Delta H_{\mathrm{t}}+\Delta H_{\mathrm{a}}+$ I.E. $+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})+\mathrm{EA}$

Or correct Born-Haber cycle drawn out
$=+411+109+494+121-364$
$=+771\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
-771 scores 2/3
+892 scores $1 / 3$
-51 scores 1/3
-892 scores zero
+51 scores zero ignore units
(c) (i) lons are perfect spheres (or point charges)

Only electrostatic attraction/no covalent interaction
mention of molecules/intermolecular forces/covalent bonds
$C E=0$
allow ionic bonding only
If mention of atoms $C E=0$ for M2
(ii) Ionic

Allow no covalent character/bonding
(iii) Ionic with additional covalent bonding

Or has covalent character/partially covalent
Allow mention of polarisation of ions or description of polarisation

M5. (a) The molecular ion is

- The molecule with one/an electron knocked off/lost Ignore the highest or biggest m / z peak

OR

- The molecule with a (single) positive charge
$O R$
- the ion with/it has the largest/highest/biggest m / z (value/ratio)

Ignore "the peak to the right"
OR

- the ion with/it has an m / z equal to the M_{r}

Ignore "compound"
(b) (i) $\underline{2(14.00307)+15.99491}=\underline{44.00105}$

A sum is needed to show this
(ii) Propane $/ \mathrm{C}_{3} \mathrm{H}_{8}$ and carbon dioxide $/ \mathrm{CO}_{2}$ (and $\mathrm{N}_{2} \mathrm{O}$) or
they or both the gases/molecules or all three gases/molecules have an (imprecise) M_{r} of 44.0 (OR 44)

OR
they have the same $\boldsymbol{M}_{\mathrm{r}}$ or molecular mass (to one d.p)
This could be shown in a calculation of relative masses for propane and carbon dioxide
(iii) By definition

OR
The standard/reference (value/isotope) Ignore "element"
(c) (i) M1 (could be scored by a correct mathematical expression)

$$
\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\text {pooducts }}-\Sigma \Delta \mathrm{H}_{\text {reactans }}
$$

OR a correct cycle of balanced equations
M1 and M2 can be scored with correct moles as follows $\Delta H+2(-46)=+82+3(-286)$
$\Delta H-92=-776$
$\Delta H=92-776$ OR $92+82-858$
M3
$\Delta H=\underline{-684}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (This is worth 3 marks)

Award 1 mark ONLY for + 684

Full marks for correct answer.
Ignore units.
Deduct one mark for an arithmetic error.
(ii) The value is quoted at a pressure of 100 kPa OR $1 \underline{\mathrm{bar}}$ or $\underline{10^{5} \mathrm{~Pa}}$ OR

All reactants and products are in their standard states/their normal states at 100 kPa or 1 bar

Ignore 1 atmosphere/101 kPa
Ignore "constant pressure"

